Yunhang Shen, Rongrong Ji, Kuiyuan Yang, Cheng Deng, Changhu Wang
{"title":"弱监督检测的类别感知空间约束","authors":"Yunhang Shen, Rongrong Ji, Kuiyuan Yang, Cheng Deng, Changhu Wang","doi":"10.1109/TIP.2019.2933735","DOIUrl":null,"url":null,"abstract":"<p><p>Weakly supervised object detection has attracted increasing research attention recently. To this end, most existing schemes rely on scoring category-independent region proposals, which is formulated as a multiple instance learning problem. During this process, the proposal scores are aggregated and supervised by only image-level labels, which often fails to locate object boundaries precisely. In this paper, we break through such a restriction by taking a deeper look into the score aggregation stage and propose a Category-aware Spatial Constraint (CSC) scheme for proposals, which is integrated into weakly supervised object detection in an end-to-end learning manner. In particular, we incorporate the global shape information of objects as an unsupervised constraint, which is inferred from build-in foreground-and-background cues, termed Category-specific Pixel Gradient (CPG) maps. Specifically, each region proposal is weighted according to how well it covers the estimated shape of objects. For each category, a multi-center regularization is further introduced to penalize the violations between centers cluster and high-score proposals in a given image. Extensive experiments are done on the most widely-used benchmark Pascal VOC and COCO, which shows that our approach significantly improves weakly supervised object detection without adding new learnable parameters to the existing models nor changing the structures of CNNs.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Category-Aware Spatial Constraint for Weakly Supervised Detection.\",\"authors\":\"Yunhang Shen, Rongrong Ji, Kuiyuan Yang, Cheng Deng, Changhu Wang\",\"doi\":\"10.1109/TIP.2019.2933735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Weakly supervised object detection has attracted increasing research attention recently. To this end, most existing schemes rely on scoring category-independent region proposals, which is formulated as a multiple instance learning problem. During this process, the proposal scores are aggregated and supervised by only image-level labels, which often fails to locate object boundaries precisely. In this paper, we break through such a restriction by taking a deeper look into the score aggregation stage and propose a Category-aware Spatial Constraint (CSC) scheme for proposals, which is integrated into weakly supervised object detection in an end-to-end learning manner. In particular, we incorporate the global shape information of objects as an unsupervised constraint, which is inferred from build-in foreground-and-background cues, termed Category-specific Pixel Gradient (CPG) maps. Specifically, each region proposal is weighted according to how well it covers the estimated shape of objects. For each category, a multi-center regularization is further introduced to penalize the violations between centers cluster and high-score proposals in a given image. Extensive experiments are done on the most widely-used benchmark Pascal VOC and COCO, which shows that our approach significantly improves weakly supervised object detection without adding new learnable parameters to the existing models nor changing the structures of CNNs.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2933735\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2933735","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Category-Aware Spatial Constraint for Weakly Supervised Detection.
Weakly supervised object detection has attracted increasing research attention recently. To this end, most existing schemes rely on scoring category-independent region proposals, which is formulated as a multiple instance learning problem. During this process, the proposal scores are aggregated and supervised by only image-level labels, which often fails to locate object boundaries precisely. In this paper, we break through such a restriction by taking a deeper look into the score aggregation stage and propose a Category-aware Spatial Constraint (CSC) scheme for proposals, which is integrated into weakly supervised object detection in an end-to-end learning manner. In particular, we incorporate the global shape information of objects as an unsupervised constraint, which is inferred from build-in foreground-and-background cues, termed Category-specific Pixel Gradient (CPG) maps. Specifically, each region proposal is weighted according to how well it covers the estimated shape of objects. For each category, a multi-center regularization is further introduced to penalize the violations between centers cluster and high-score proposals in a given image. Extensive experiments are done on the most widely-used benchmark Pascal VOC and COCO, which shows that our approach significantly improves weakly supervised object detection without adding new learnable parameters to the existing models nor changing the structures of CNNs.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.