Jichang Li, Si Wu, Cheng Liu, Zhiwen Yu, Hau-San Wong
{"title":"半监督深度耦合集合学习与分类地标探索","authors":"Jichang Li, Si Wu, Cheng Liu, Zhiwen Yu, Hau-San Wong","doi":"10.1109/TIP.2019.2933724","DOIUrl":null,"url":null,"abstract":"<p><p>Using an ensemble of neural networks with consistency regularization is effective for improving performance and stability of deep learning, compared to the case of a single network. In this paper, we present a semi-supervised Deep Coupled Ensemble (DCE) model, which contributes to ensemble learning and classification landmark exploration for better locating the final decision boundaries in the learnt latent space. First, multiple complementary consistency regularizations are integrated into our DCE model to enable the ensemble members to learn from each other and themselves, such that training experience from different sources can be shared and utilized during training. Second, in view of the possibility of producing incorrect predictions on a number of difficult instances, we adopt class-wise mean feature matching to explore important unlabeled instances as classification landmarks, on which the model predictions are more reliable. Minimizing the weighted conditional entropy on unlabeled data is able to force the final decision boundaries to move away from important training data points, which facilitates semi-supervised learning. Ensemble members could eventually have similar performance due to consistency regularization, and thus only one of these members is needed during the test stage, such that the efficiency of our model is the same as the non-ensemble case. Extensive experimental results demonstrate the superiority of our proposed DCE model over existing state-of-the-art semi-supervised learning methods.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised Deep Coupled Ensemble Learning with Classification Landmark Exploration.\",\"authors\":\"Jichang Li, Si Wu, Cheng Liu, Zhiwen Yu, Hau-San Wong\",\"doi\":\"10.1109/TIP.2019.2933724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using an ensemble of neural networks with consistency regularization is effective for improving performance and stability of deep learning, compared to the case of a single network. In this paper, we present a semi-supervised Deep Coupled Ensemble (DCE) model, which contributes to ensemble learning and classification landmark exploration for better locating the final decision boundaries in the learnt latent space. First, multiple complementary consistency regularizations are integrated into our DCE model to enable the ensemble members to learn from each other and themselves, such that training experience from different sources can be shared and utilized during training. Second, in view of the possibility of producing incorrect predictions on a number of difficult instances, we adopt class-wise mean feature matching to explore important unlabeled instances as classification landmarks, on which the model predictions are more reliable. Minimizing the weighted conditional entropy on unlabeled data is able to force the final decision boundaries to move away from important training data points, which facilitates semi-supervised learning. Ensemble members could eventually have similar performance due to consistency regularization, and thus only one of these members is needed during the test stage, such that the efficiency of our model is the same as the non-ensemble case. Extensive experimental results demonstrate the superiority of our proposed DCE model over existing state-of-the-art semi-supervised learning methods.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2933724\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2933724","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Semi-Supervised Deep Coupled Ensemble Learning with Classification Landmark Exploration.
Using an ensemble of neural networks with consistency regularization is effective for improving performance and stability of deep learning, compared to the case of a single network. In this paper, we present a semi-supervised Deep Coupled Ensemble (DCE) model, which contributes to ensemble learning and classification landmark exploration for better locating the final decision boundaries in the learnt latent space. First, multiple complementary consistency regularizations are integrated into our DCE model to enable the ensemble members to learn from each other and themselves, such that training experience from different sources can be shared and utilized during training. Second, in view of the possibility of producing incorrect predictions on a number of difficult instances, we adopt class-wise mean feature matching to explore important unlabeled instances as classification landmarks, on which the model predictions are more reliable. Minimizing the weighted conditional entropy on unlabeled data is able to force the final decision boundaries to move away from important training data points, which facilitates semi-supervised learning. Ensemble members could eventually have similar performance due to consistency regularization, and thus only one of these members is needed during the test stage, such that the efficiency of our model is the same as the non-ensemble case. Extensive experimental results demonstrate the superiority of our proposed DCE model over existing state-of-the-art semi-supervised learning methods.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.