二进制浮点运算中被正确取整的函数或常数乘除的 Ulps 误差

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nicolas Brisebarre;Jean-Michel Muller;Joris Picot
{"title":"二进制浮点运算中被正确取整的函数或常数乘除的 Ulps 误差","authors":"Nicolas Brisebarre;Jean-Michel Muller;Joris Picot","doi":"10.1109/TETC.2023.3294986","DOIUrl":null,"url":null,"abstract":"Assume we use a binary floating-point arithmetic and that \n<inline-formula><tex-math>$\\operatorname{RN}$</tex-math></inline-formula>\n is the round-to-nearest function. Also assume that \n<inline-formula><tex-math>$c$</tex-math></inline-formula>\n is a constant or a real function of one or more variables, and that we have at our disposal a correctly rounded implementation of \n<inline-formula><tex-math>$c$</tex-math></inline-formula>\n, say \n<inline-formula><tex-math>$\\hat{c}= \\operatorname{RN}(c)$</tex-math></inline-formula>\n. For evaluating \n<inline-formula><tex-math>$x \\cdot c$</tex-math></inline-formula>\n (resp. \n<inline-formula><tex-math>$ x / c$</tex-math></inline-formula>\n or \n<inline-formula><tex-math>$c / x$</tex-math></inline-formula>\n), the natural way is to replace it by \n<inline-formula><tex-math>$\\operatorname{RN}(x \\cdot \\hat{c})$</tex-math></inline-formula>\n (resp. \n<inline-formula><tex-math>$ \\operatorname{RN}(x / \\hat{c})$</tex-math></inline-formula>\n or \n<inline-formula><tex-math>$\\operatorname{RN}(\\hat{c}/ x)$</tex-math></inline-formula>\n), that is, to call function \n<inline-formula><tex-math>$\\hat{c}$</tex-math></inline-formula>\n and to perform a floating-point multiplication or division. This can be generalized to the approximation of \n<inline-formula><tex-math>$n/d$</tex-math></inline-formula>\n by \n<inline-formula><tex-math>$\\operatorname{RN}(\\hat{n}/\\hat{d})$</tex-math></inline-formula>\n and the approximation of \n<inline-formula><tex-math>$n \\cdot d$</tex-math></inline-formula>\n by \n<inline-formula><tex-math>$\\operatorname{RN}(\\hat{n} \\cdot \\hat{d})$</tex-math></inline-formula>\n, where \n<inline-formula><tex-math>$\\hat{n} = \\operatorname{RN}(n)$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$\\hat{d} = \\operatorname{RN}(d)$</tex-math></inline-formula>\n, and \n<inline-formula><tex-math>$n$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$d$</tex-math></inline-formula>\n are functions for which we have at our disposal a correctly rounded implementation. We discuss tight error bounds in ulps of such approximations. From our results, one immediately obtains tight error bounds for calculations such as \n<inline-formula><tex-math>$\\mathtt {x * pi}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\mathtt {ln(2)/x}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\mathtt {x/(y+z)}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\mathtt {(x+y)*z}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\mathtt {x/sqrt(y)}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\mathtt {sqrt(x)/{y}}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\mathtt {(x+y)(z+t)}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\mathtt {(x+y)/(z+t)}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\mathtt {(x+y)/(zt)}$</tex-math></inline-formula>\n, etc. in floating-point arithmetic.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error in Ulps of the Multiplication or Division by a Correctly-Rounded Function or Constant in Binary Floating-Point Arithmetic\",\"authors\":\"Nicolas Brisebarre;Jean-Michel Muller;Joris Picot\",\"doi\":\"10.1109/TETC.2023.3294986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assume we use a binary floating-point arithmetic and that \\n<inline-formula><tex-math>$\\\\operatorname{RN}$</tex-math></inline-formula>\\n is the round-to-nearest function. Also assume that \\n<inline-formula><tex-math>$c$</tex-math></inline-formula>\\n is a constant or a real function of one or more variables, and that we have at our disposal a correctly rounded implementation of \\n<inline-formula><tex-math>$c$</tex-math></inline-formula>\\n, say \\n<inline-formula><tex-math>$\\\\hat{c}= \\\\operatorname{RN}(c)$</tex-math></inline-formula>\\n. For evaluating \\n<inline-formula><tex-math>$x \\\\cdot c$</tex-math></inline-formula>\\n (resp. \\n<inline-formula><tex-math>$ x / c$</tex-math></inline-formula>\\n or \\n<inline-formula><tex-math>$c / x$</tex-math></inline-formula>\\n), the natural way is to replace it by \\n<inline-formula><tex-math>$\\\\operatorname{RN}(x \\\\cdot \\\\hat{c})$</tex-math></inline-formula>\\n (resp. \\n<inline-formula><tex-math>$ \\\\operatorname{RN}(x / \\\\hat{c})$</tex-math></inline-formula>\\n or \\n<inline-formula><tex-math>$\\\\operatorname{RN}(\\\\hat{c}/ x)$</tex-math></inline-formula>\\n), that is, to call function \\n<inline-formula><tex-math>$\\\\hat{c}$</tex-math></inline-formula>\\n and to perform a floating-point multiplication or division. This can be generalized to the approximation of \\n<inline-formula><tex-math>$n/d$</tex-math></inline-formula>\\n by \\n<inline-formula><tex-math>$\\\\operatorname{RN}(\\\\hat{n}/\\\\hat{d})$</tex-math></inline-formula>\\n and the approximation of \\n<inline-formula><tex-math>$n \\\\cdot d$</tex-math></inline-formula>\\n by \\n<inline-formula><tex-math>$\\\\operatorname{RN}(\\\\hat{n} \\\\cdot \\\\hat{d})$</tex-math></inline-formula>\\n, where \\n<inline-formula><tex-math>$\\\\hat{n} = \\\\operatorname{RN}(n)$</tex-math></inline-formula>\\n and \\n<inline-formula><tex-math>$\\\\hat{d} = \\\\operatorname{RN}(d)$</tex-math></inline-formula>\\n, and \\n<inline-formula><tex-math>$n$</tex-math></inline-formula>\\n and \\n<inline-formula><tex-math>$d$</tex-math></inline-formula>\\n are functions for which we have at our disposal a correctly rounded implementation. We discuss tight error bounds in ulps of such approximations. From our results, one immediately obtains tight error bounds for calculations such as \\n<inline-formula><tex-math>$\\\\mathtt {x * pi}$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\mathtt {ln(2)/x}$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\mathtt {x/(y+z)}$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\mathtt {(x+y)*z}$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\mathtt {x/sqrt(y)}$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\mathtt {sqrt(x)/{y}}$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\mathtt {(x+y)(z+t)}$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\mathtt {(x+y)/(z+t)}$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\mathtt {(x+y)/(zt)}$</tex-math></inline-formula>\\n, etc. in floating-point arithmetic.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10186374/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10186374/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

假设我们使用二进制浮点运算,$\operatorname{RN}$ 是四舍五入函数。还假设 $c$ 是一个常数或一个或多个变量的实函数,并且我们有一个正确舍入的 $c$ 实现,例如 $\hat{c}= \operatorname{RN}(c)$.对于计算 $x \cdot c$(即 $ x / c$ 或 $c / x$),自然的方法是用 $\operatorname{RN}(x \cdot \hat{c})$ 替换它(即 $ \operatorname{RN}(x \cdot \hat{c})$ 替换它)。$ \operatorname{RN}(x / \hat{c})$ 或 $\operatorname{RN}(\hat{c}/ x)$),也就是说,调用函数 $\hat{c}$ 并执行浮点乘法或除法。这可以推广到用 $\operatorname{RN}(\hat{n}/\hat{d})$ 近似 $n/d$ 和用 $\operatorname{RN}(\hat{n} \cdot \hat{d})$ 近似 $n \cdot d$、其中,$\hat{n} = \operatorname{RN}(n)$ 和 $\hat{d} = \operatorname{RN}(d)$ ,而 $n$ 和 $d$ 是我们可以正确舍入实现的函数。我们将讨论这种近似的 ulps 紧误差边界。从我们的结果中,我们可以立即得到诸如 $\mathtt {x * pi}$, $\mathtt {ln(2)/x}$, $\mathtt {x/(y+z)}$ 等计算的严格误差边界、$\mathtt {(x+y)*z}$, $\mathtt {x/sqrt(y)}$, $\mathtt {sqrt(x)/{y}}$, $\mathtt {(x+y)(z+t)}$, $\mathtt {(x+y)/(z+t)}$, $\mathtt {(x+y)/(zt)}$, 等等。在浮点运算中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error in Ulps of the Multiplication or Division by a Correctly-Rounded Function or Constant in Binary Floating-Point Arithmetic
Assume we use a binary floating-point arithmetic and that $\operatorname{RN}$ is the round-to-nearest function. Also assume that $c$ is a constant or a real function of one or more variables, and that we have at our disposal a correctly rounded implementation of $c$ , say $\hat{c}= \operatorname{RN}(c)$ . For evaluating $x \cdot c$ (resp. $ x / c$ or $c / x$ ), the natural way is to replace it by $\operatorname{RN}(x \cdot \hat{c})$ (resp. $ \operatorname{RN}(x / \hat{c})$ or $\operatorname{RN}(\hat{c}/ x)$ ), that is, to call function $\hat{c}$ and to perform a floating-point multiplication or division. This can be generalized to the approximation of $n/d$ by $\operatorname{RN}(\hat{n}/\hat{d})$ and the approximation of $n \cdot d$ by $\operatorname{RN}(\hat{n} \cdot \hat{d})$ , where $\hat{n} = \operatorname{RN}(n)$ and $\hat{d} = \operatorname{RN}(d)$ , and $n$ and $d$ are functions for which we have at our disposal a correctly rounded implementation. We discuss tight error bounds in ulps of such approximations. From our results, one immediately obtains tight error bounds for calculations such as $\mathtt {x * pi}$ , $\mathtt {ln(2)/x}$ , $\mathtt {x/(y+z)}$ , $\mathtt {(x+y)*z}$ , $\mathtt {x/sqrt(y)}$ , $\mathtt {sqrt(x)/{y}}$ , $\mathtt {(x+y)(z+t)}$ , $\mathtt {(x+y)/(z+t)}$ , $\mathtt {(x+y)/(zt)}$ , etc. in floating-point arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信