PISA:用于成像系统的非易失性传感器处理加速器

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shaahin Angizi;Sepehr Tabrizchi;David Z. Pan;Arman Roohi
{"title":"PISA:用于成像系统的非易失性传感器处理加速器","authors":"Shaahin Angizi;Sepehr Tabrizchi;David Z. Pan;Arman Roohi","doi":"10.1109/TETC.2023.3292251","DOIUrl":null,"url":null,"abstract":"This work proposes a Processing-In-Sensor Accelerator, namely PISA, as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing in AI devices. PISA intrinsically implements a coarse-grained convolution operation in Binarized-Weight Neural Networks (BWNNs) leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. This remarkably reduces the power consumption of data conversion and transmission to an off-chip processor. The design is completed with a bit-wise near-sensor in-memory computing unit to process the remaining network layers. Once the object is detected, PISA switches to typical sensing mode to capture the image for a fine-grained convolution using only a near-sensor processing unit. Our circuit-to-application co-simulation results on a BWNN acceleration demonstrate minor accuracy degradation on various image datasets in coarse-grained evaluation compared to baseline BWNN models, while PISA achieves a frame rate of 1000 and efficiency of \n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n 1.74 TOp/s/W. Lastly, PISA substantially reduces data conversion and transmission energy by \n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n 84% compared to a baseline.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"11 4","pages":"962-972"},"PeriodicalIF":5.1000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PISA: A Non-Volatile Processing-in-Sensor Accelerator for Imaging Systems\",\"authors\":\"Shaahin Angizi;Sepehr Tabrizchi;David Z. Pan;Arman Roohi\",\"doi\":\"10.1109/TETC.2023.3292251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a Processing-In-Sensor Accelerator, namely PISA, as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing in AI devices. PISA intrinsically implements a coarse-grained convolution operation in Binarized-Weight Neural Networks (BWNNs) leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. This remarkably reduces the power consumption of data conversion and transmission to an off-chip processor. The design is completed with a bit-wise near-sensor in-memory computing unit to process the remaining network layers. Once the object is detected, PISA switches to typical sensing mode to capture the image for a fine-grained convolution using only a near-sensor processing unit. Our circuit-to-application co-simulation results on a BWNN acceleration demonstrate minor accuracy degradation on various image datasets in coarse-grained evaluation compared to baseline BWNN models, while PISA achieves a frame rate of 1000 and efficiency of \\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n 1.74 TOp/s/W. Lastly, PISA substantially reduces data conversion and transmission energy by \\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n 84% compared to a baseline.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"11 4\",\"pages\":\"962-972\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10179277/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10179277/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

本研究提出了一种 "传感器内处理加速器"(即 PISA),作为一种灵活、节能、高性能的解决方案,用于人工智能设备中的实时智能图像处理。PISA 利用传感器端的非易失性权重存储的新型计算像素,在二值化权重神经网络(BWNN)中本质上实现了粗粒度卷积操作。这大大降低了数据转换和传输到片外处理器的功耗。设计完成后,还需要一个比特近传感器内存计算单元来处理剩余的网络层。一旦检测到物体,PISA 就会切换到典型传感模式,仅使用一个近传感器处理单元捕捉图像,进行细粒度卷积。与基线 BWNN 模型相比,我们在 BWNN 加速上进行的电路到应用协同仿真结果表明,在粗粒度评估中,各种图像数据集的准确性略有下降,而 PISA 实现了 1000 帧的帧速率和 $\sim$ 1.74 TOp/s/W 的效率。最后,与基线相比,PISA 大幅降低了 84% 的数据转换和传输能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PISA: A Non-Volatile Processing-in-Sensor Accelerator for Imaging Systems
This work proposes a Processing-In-Sensor Accelerator, namely PISA, as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing in AI devices. PISA intrinsically implements a coarse-grained convolution operation in Binarized-Weight Neural Networks (BWNNs) leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. This remarkably reduces the power consumption of data conversion and transmission to an off-chip processor. The design is completed with a bit-wise near-sensor in-memory computing unit to process the remaining network layers. Once the object is detected, PISA switches to typical sensing mode to capture the image for a fine-grained convolution using only a near-sensor processing unit. Our circuit-to-application co-simulation results on a BWNN acceleration demonstrate minor accuracy degradation on various image datasets in coarse-grained evaluation compared to baseline BWNN models, while PISA achieves a frame rate of 1000 and efficiency of $\sim$ 1.74 TOp/s/W. Lastly, PISA substantially reduces data conversion and transmission energy by $\sim$ 84% compared to a baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信