Shaahin Angizi;Sepehr Tabrizchi;David Z. Pan;Arman Roohi
{"title":"PISA:用于成像系统的非易失性传感器处理加速器","authors":"Shaahin Angizi;Sepehr Tabrizchi;David Z. Pan;Arman Roohi","doi":"10.1109/TETC.2023.3292251","DOIUrl":null,"url":null,"abstract":"This work proposes a Processing-In-Sensor Accelerator, namely PISA, as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing in AI devices. PISA intrinsically implements a coarse-grained convolution operation in Binarized-Weight Neural Networks (BWNNs) leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. This remarkably reduces the power consumption of data conversion and transmission to an off-chip processor. The design is completed with a bit-wise near-sensor in-memory computing unit to process the remaining network layers. Once the object is detected, PISA switches to typical sensing mode to capture the image for a fine-grained convolution using only a near-sensor processing unit. Our circuit-to-application co-simulation results on a BWNN acceleration demonstrate minor accuracy degradation on various image datasets in coarse-grained evaluation compared to baseline BWNN models, while PISA achieves a frame rate of 1000 and efficiency of \n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n 1.74 TOp/s/W. Lastly, PISA substantially reduces data conversion and transmission energy by \n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n 84% compared to a baseline.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"11 4","pages":"962-972"},"PeriodicalIF":5.1000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PISA: A Non-Volatile Processing-in-Sensor Accelerator for Imaging Systems\",\"authors\":\"Shaahin Angizi;Sepehr Tabrizchi;David Z. Pan;Arman Roohi\",\"doi\":\"10.1109/TETC.2023.3292251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a Processing-In-Sensor Accelerator, namely PISA, as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing in AI devices. PISA intrinsically implements a coarse-grained convolution operation in Binarized-Weight Neural Networks (BWNNs) leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. This remarkably reduces the power consumption of data conversion and transmission to an off-chip processor. The design is completed with a bit-wise near-sensor in-memory computing unit to process the remaining network layers. Once the object is detected, PISA switches to typical sensing mode to capture the image for a fine-grained convolution using only a near-sensor processing unit. Our circuit-to-application co-simulation results on a BWNN acceleration demonstrate minor accuracy degradation on various image datasets in coarse-grained evaluation compared to baseline BWNN models, while PISA achieves a frame rate of 1000 and efficiency of \\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n 1.74 TOp/s/W. Lastly, PISA substantially reduces data conversion and transmission energy by \\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n 84% compared to a baseline.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"11 4\",\"pages\":\"962-972\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10179277/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10179277/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
PISA: A Non-Volatile Processing-in-Sensor Accelerator for Imaging Systems
This work proposes a Processing-In-Sensor Accelerator, namely PISA, as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing in AI devices. PISA intrinsically implements a coarse-grained convolution operation in Binarized-Weight Neural Networks (BWNNs) leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. This remarkably reduces the power consumption of data conversion and transmission to an off-chip processor. The design is completed with a bit-wise near-sensor in-memory computing unit to process the remaining network layers. Once the object is detected, PISA switches to typical sensing mode to capture the image for a fine-grained convolution using only a near-sensor processing unit. Our circuit-to-application co-simulation results on a BWNN acceleration demonstrate minor accuracy degradation on various image datasets in coarse-grained evaluation compared to baseline BWNN models, while PISA achieves a frame rate of 1000 and efficiency of
$\sim$
1.74 TOp/s/W. Lastly, PISA substantially reduces data conversion and transmission energy by
$\sim$
84% compared to a baseline.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.