分层随机抽样分类的多度量评价:一个案例研究

Gunjan Thakur, Bernie J. Daigle, Meng Qian, Kelsey R. Dean, Yuanyang Zhang, Ruoting Yang, Taek‐Kyun Kim, Xiaogang Wu, Meng Li, Inyoul Y. Lee, L. Petzold, Francis J. Doyle
{"title":"分层随机抽样分类的多度量评价:一个案例研究","authors":"Gunjan Thakur, Bernie J. Daigle, Meng Qian, Kelsey R. Dean, Yuanyang Zhang, Ruoting Yang, Taek‐Kyun Kim, Xiaogang Wu, Meng Li, Inyoul Y. Lee, L. Petzold, Francis J. Doyle","doi":"10.1109/LLS.2016.2615086","DOIUrl":null,"url":null,"abstract":"Accurate classification of biological phenotypes is an essential task for medical decision making. The selection of subjects for classifier training and validation sets is a crucial step within this task. To evaluate the impact of two approaches for subject selection—randomization and clinical balancing, we applied six classification algorithms to a highly replicated publicly available breast cancer data set. Using six performance metrics, we demonstrate that clinical balancing improves both training and validation performance for all methods on average. We also observed a smaller discrepancy between training and validation performance. Furthermore, a simple analytical argument is presented which suggests that we need only two metrics from the class of metrics based on the entries of the confusion matrix. In light of our results, we recommend: 1) clinical balancing of training and validation data to improve signal-to-noise ratio and 2) the use of multiple classification algorithms and evaluation metrics for a comprehensive evaluation of the decision making process.","PeriodicalId":87271,"journal":{"name":"IEEE life sciences letters","volume":"2 1","pages":"43-46"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LLS.2016.2615086","citationCount":"4","resultStr":"{\"title\":\"A Multimetric Evaluation of Stratified Random Sampling for Classification: A Case Study\",\"authors\":\"Gunjan Thakur, Bernie J. Daigle, Meng Qian, Kelsey R. Dean, Yuanyang Zhang, Ruoting Yang, Taek‐Kyun Kim, Xiaogang Wu, Meng Li, Inyoul Y. Lee, L. Petzold, Francis J. Doyle\",\"doi\":\"10.1109/LLS.2016.2615086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate classification of biological phenotypes is an essential task for medical decision making. The selection of subjects for classifier training and validation sets is a crucial step within this task. To evaluate the impact of two approaches for subject selection—randomization and clinical balancing, we applied six classification algorithms to a highly replicated publicly available breast cancer data set. Using six performance metrics, we demonstrate that clinical balancing improves both training and validation performance for all methods on average. We also observed a smaller discrepancy between training and validation performance. Furthermore, a simple analytical argument is presented which suggests that we need only two metrics from the class of metrics based on the entries of the confusion matrix. In light of our results, we recommend: 1) clinical balancing of training and validation data to improve signal-to-noise ratio and 2) the use of multiple classification algorithms and evaluation metrics for a comprehensive evaluation of the decision making process.\",\"PeriodicalId\":87271,\"journal\":{\"name\":\"IEEE life sciences letters\",\"volume\":\"2 1\",\"pages\":\"43-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LLS.2016.2615086\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE life sciences letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LLS.2016.2615086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE life sciences letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LLS.2016.2615086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

生物学表型的准确分类是医疗决策的重要任务。分类器训练和验证集的主题选择是该任务中的关键步骤。为了评估两种方法对受试者选择的影响——随机化和临床平衡,我们对一个高度重复的公开乳腺癌数据集应用了六种分类算法。使用六个性能指标,我们证明临床平衡平均提高了所有方法的训练和验证性能。我们还观察到训练和验证性能之间存在较小的差异。此外,提出了一个简单的分析论证,表明我们只需要基于混淆矩阵条目的度量类中的两个度量。根据我们的研究结果,我们建议:1)临床平衡训练和验证数据以提高信噪比;2)使用多种分类算法和评估指标对决策过程进行综合评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multimetric Evaluation of Stratified Random Sampling for Classification: A Case Study
Accurate classification of biological phenotypes is an essential task for medical decision making. The selection of subjects for classifier training and validation sets is a crucial step within this task. To evaluate the impact of two approaches for subject selection—randomization and clinical balancing, we applied six classification algorithms to a highly replicated publicly available breast cancer data set. Using six performance metrics, we demonstrate that clinical balancing improves both training and validation performance for all methods on average. We also observed a smaller discrepancy between training and validation performance. Furthermore, a simple analytical argument is presented which suggests that we need only two metrics from the class of metrics based on the entries of the confusion matrix. In light of our results, we recommend: 1) clinical balancing of training and validation data to improve signal-to-noise ratio and 2) the use of multiple classification algorithms and evaluation metrics for a comprehensive evaluation of the decision making process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信