共振吸收器分数阶带宽增强研究

Manish Mathew Tirkey, N. Gupta
{"title":"共振吸收器分数阶带宽增强研究","authors":"Manish Mathew Tirkey, N. Gupta","doi":"10.1109/MEMC.2023.10201437","DOIUrl":null,"url":null,"abstract":"Limitation of the absorption band is an inherent problem in the resonant absorbers. An investigation carried out to address this problem is presented in this magazine. Initially, we have designed a resonant absorber using the conventional metal-insulator-metal configuration, which provides a narrow fractional bandwidth (FBW) of 3.4%. Then the FBW of the absorber is increased up to 28.4% by modifying the conventional configuration while maintaining the same resonant frequency for both absorbers. Generally, it is observed that the reflection coefficient of the absorber increases with the increase in its bandwidth. However, the proposed absorber increases the FBW as well as reduces the reflection coefficient simultaneously and achieves superior performance than the conventional resonant absorber. In addition, the proposed absorber is compact, thin, polarization-insensitive, and angularly stable.","PeriodicalId":73281,"journal":{"name":"IEEE electromagnetic compatibility magazine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on Fractional Bandwidth Enhancement of a Resonant Absorber\",\"authors\":\"Manish Mathew Tirkey, N. Gupta\",\"doi\":\"10.1109/MEMC.2023.10201437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Limitation of the absorption band is an inherent problem in the resonant absorbers. An investigation carried out to address this problem is presented in this magazine. Initially, we have designed a resonant absorber using the conventional metal-insulator-metal configuration, which provides a narrow fractional bandwidth (FBW) of 3.4%. Then the FBW of the absorber is increased up to 28.4% by modifying the conventional configuration while maintaining the same resonant frequency for both absorbers. Generally, it is observed that the reflection coefficient of the absorber increases with the increase in its bandwidth. However, the proposed absorber increases the FBW as well as reduces the reflection coefficient simultaneously and achieves superior performance than the conventional resonant absorber. In addition, the proposed absorber is compact, thin, polarization-insensitive, and angularly stable.\",\"PeriodicalId\":73281,\"journal\":{\"name\":\"IEEE electromagnetic compatibility magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE electromagnetic compatibility magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMC.2023.10201437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE electromagnetic compatibility magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMC.2023.10201437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

吸收带的限制是谐振式吸收器固有的问题。本杂志介绍了为解决这个问题而进行的一项调查。最初,我们设计了一个使用传统金属-绝缘体-金属结构的谐振吸收器,它提供了3.4%的窄分数带宽(FBW)。在保持两种吸波器谐振频率不变的情况下,通过改变传统结构,使吸波器的FBW提高到28.4%。通常,可以观察到吸收器的反射系数随其带宽的增加而增加。然而,该吸收器在提高FBW的同时降低了反射系数,取得了比传统谐振吸收器更好的性能。此外,所提出的吸收剂是紧凑的,薄,极化不敏感,和角度稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on Fractional Bandwidth Enhancement of a Resonant Absorber
Limitation of the absorption band is an inherent problem in the resonant absorbers. An investigation carried out to address this problem is presented in this magazine. Initially, we have designed a resonant absorber using the conventional metal-insulator-metal configuration, which provides a narrow fractional bandwidth (FBW) of 3.4%. Then the FBW of the absorber is increased up to 28.4% by modifying the conventional configuration while maintaining the same resonant frequency for both absorbers. Generally, it is observed that the reflection coefficient of the absorber increases with the increase in its bandwidth. However, the proposed absorber increases the FBW as well as reduces the reflection coefficient simultaneously and achieves superior performance than the conventional resonant absorber. In addition, the proposed absorber is compact, thin, polarization-insensitive, and angularly stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信