Dhaneesh Kumar, Jack Hellerstedt, Bernard Field, Benjamin Lowe, Yuefeng Yin, Nikhil V. Medhekar, Agustin Schiffrin
{"title":"二维Kagome金属-有机骨架中强相关电子的表现","authors":"Dhaneesh Kumar, Jack Hellerstedt, Bernard Field, Benjamin Lowe, Yuefeng Yin, Nikhil V. Medhekar, Agustin Schiffrin","doi":"10.1002/adfm.202106474","DOIUrl":null,"url":null,"abstract":"2D and layered electronic materials characterized by a kagome lattice, whose valence band structure includes two Dirac bands and one flat band, can host a wide range of tunable topological and strongly correlated electronic phases. While strong electron correlations have been observed in inorganic kagome crystals, they remain elusive in organic systems, which benefit from versatile synthesis protocols via molecular self‐assembly and metal‐ligand coordination. Here, direct experimental evidence of local magnetic moments resulting from strong electron–electron Coulomb interactions in a 2D metal–organic framework (MOF) is reported. The latter consists of di‐cyano‐anthracene (DCA) molecules arranged in a kagome structure via coordination with copper (Cu) atoms on a silver surface [Ag(111)]. Temperature‐dependent scanning tunneling spectroscopy reveals magnetic moments spatially confined to DCA and Cu sites of the MOF, and Kondo screened by the Ag(111) conduction electrons. By density functional theory and mean‐field Hubbard modeling, it is shown that these magnetic moments are the direct consequence of strong Coulomb interactions between electrons within the kagome MOF. The findings pave the way for nanoelectronics and spintronics technologies based on controllable correlated electron phases in 2D organic materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"31 48","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/adfm.202106474","citationCount":"14","resultStr":"{\"title\":\"Manifestation of Strongly Correlated Electrons in a 2D Kagome Metal–Organic Framework\",\"authors\":\"Dhaneesh Kumar, Jack Hellerstedt, Bernard Field, Benjamin Lowe, Yuefeng Yin, Nikhil V. Medhekar, Agustin Schiffrin\",\"doi\":\"10.1002/adfm.202106474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2D and layered electronic materials characterized by a kagome lattice, whose valence band structure includes two Dirac bands and one flat band, can host a wide range of tunable topological and strongly correlated electronic phases. While strong electron correlations have been observed in inorganic kagome crystals, they remain elusive in organic systems, which benefit from versatile synthesis protocols via molecular self‐assembly and metal‐ligand coordination. Here, direct experimental evidence of local magnetic moments resulting from strong electron–electron Coulomb interactions in a 2D metal–organic framework (MOF) is reported. The latter consists of di‐cyano‐anthracene (DCA) molecules arranged in a kagome structure via coordination with copper (Cu) atoms on a silver surface [Ag(111)]. Temperature‐dependent scanning tunneling spectroscopy reveals magnetic moments spatially confined to DCA and Cu sites of the MOF, and Kondo screened by the Ag(111) conduction electrons. By density functional theory and mean‐field Hubbard modeling, it is shown that these magnetic moments are the direct consequence of strong Coulomb interactions between electrons within the kagome MOF. The findings pave the way for nanoelectronics and spintronics technologies based on controllable correlated electron phases in 2D organic materials.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"31 48\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/adfm.202106474\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202106474\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202106474","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Manifestation of Strongly Correlated Electrons in a 2D Kagome Metal–Organic Framework
2D and layered electronic materials characterized by a kagome lattice, whose valence band structure includes two Dirac bands and one flat band, can host a wide range of tunable topological and strongly correlated electronic phases. While strong electron correlations have been observed in inorganic kagome crystals, they remain elusive in organic systems, which benefit from versatile synthesis protocols via molecular self‐assembly and metal‐ligand coordination. Here, direct experimental evidence of local magnetic moments resulting from strong electron–electron Coulomb interactions in a 2D metal–organic framework (MOF) is reported. The latter consists of di‐cyano‐anthracene (DCA) molecules arranged in a kagome structure via coordination with copper (Cu) atoms on a silver surface [Ag(111)]. Temperature‐dependent scanning tunneling spectroscopy reveals magnetic moments spatially confined to DCA and Cu sites of the MOF, and Kondo screened by the Ag(111) conduction electrons. By density functional theory and mean‐field Hubbard modeling, it is shown that these magnetic moments are the direct consequence of strong Coulomb interactions between electrons within the kagome MOF. The findings pave the way for nanoelectronics and spintronics technologies based on controllable correlated electron phases in 2D organic materials.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.