光伏文献综述(第183期)

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Ziv Hameiri
{"title":"光伏文献综述(第183期)","authors":"Ziv Hameiri","doi":"10.1002/pip.3692","DOIUrl":null,"url":null,"abstract":"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions, please email Ziv Hameiri (<span>[email protected]</span>).</p><p>Gupta D, Veerender P, Sridevi C, et al. <b>Study of bias-induced degradation mechanism in perovskite CH</b><sub><b>3</b></sub><b>NH</b><sub><b>3</b></sub><b>PbI</b><sub><b>3-x</b></sub><b>Cl</b><sub><b>x</b></sub> <b>solar cells by electroluminescence spectroscopy.</b> <i>Applied Physics A-Materials Science and Processing</i> 2023; <b>129</b>(2): 127.</p><p>Li YY, Jia ZL, Yang YJ, et al. <b>Shallow traps-induced ultra-long lifetime of metal halide perovskites probed with light-biased time-resolved microwave conductivity.</b> <i>Applied Physics Reviews</i> 2023; <b>10</b>(1): 011406.</p><p>Zhao XL, Song CH, Zhang HF, et al. <b>HRNet-based automatic identification of photovoltaic module defects using electroluminescence images.</b> <i>Energy</i> 2023; <b>267</b>:126605.</p><p>Puranik VE, Kumar R, Gupta R. <b>Generalized quantitative electroluminescence method for the performance evaluation of defective and unevenly degraded crystalline silicon photovoltaic module.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(3): 269–282.</p><p>Zhang Y, Monokroussos C, Wilterdink H, et al. <b>Interlaboratory comparison of voltage sweep methods used for the electrical characterization of encapsulated high-efficiency c-Si solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(3): 237–250.</p><p>Javier GMN, Dwivedi P, Buratti Y, et al. <b>Improvements and gaps in the empirical expressions for the fill factor of modern industrial solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>:112183.</p><p>Chang NL, Poduval GK, Sang B, et al. <b>Techno-economic analysis of the use of atomic layer deposited transition metal oxides in silicon heterojunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 414–428.</p><p>Glunz SW, Steinhauser B, Polzin J-I, et al. <b>Silicon-based passivating contacts: The TOPCon route.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 341–359.</p><p>Ibarra Michel J, Dréon J, Boccard M, et al. <b>Carrier-selective contacts using metal compounds for crystalline silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 380–413.</p><p>Liao B, Wu W, Yeo RJ, et al. <b>Atomic scale controlled tunnel oxide enabled by a novel industrial tube-based PEALD technology with demonstrated commercial TOPCon cell efficiencies &gt;24%.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(3): 220–229.</p><p>Nandakumar N, Rodriguez JW, Padhamnath P, et al. <b>Large-area monoPoly solar cells on 110 μm thin c–Si wafers with a rear n</b><sup>+</sup><b>poly-Si/SiO</b><sub><b>x</b></sub> <b>stack deposited by inline plasma-enhanced chemical vapour deposition.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 360–368.</p><p>Peibst R, Haase F, Min B, et al. <b>On the chances and challenges of combining electron-collecting nPOLO and hole-collecting Al-p</b><sup>+</sup> <b>contacts in highly efficient p-type c-Si solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 327–340.</p><p>Rehman Au, Van Kerschaver EP, Aydin E, et al. <b>Electrode metallization for scaled perovskite/silicon tandem solar cells: Challenges and opportunities.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 429–442.</p><p>Yan D, Cuevas A, Stuckelberger J, et al. <b>Silicon solar cells with passivating contacts: Classification and performance.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 310–326.</p><p>Zhang X, Dumbrell R, Li W, et al. <b>Mass production of crystalline silicon solar cells with polysilicon-based passivating contacts: An industrial perspective.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 369–379.</p><p>Du H, Wang T, Zeng Y, et al. <b>Improved contact quality for silver-free silicon heterojunction solar cells by phosphoric acid treatment.</b> <i>Solar Energy</i> 2023; <b>252</b>:1–7.</p><p>Ganesan K, Winston DP, Sugumar S, et al. <b>Performance analysis of n-type PERT bifacial solar PV module under diverse albedo conditions.</b> <i>Solar Energy</i> 2023; <b>252</b>: 81–90.</p><p>Ding D, Du Z, Liu R, et al. <b>Laser doping selective emitter with thin borosilicate glass layer for n-type TOPCon c-Si solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112230.</p><p>Jiang X, Wang H, Huang X, et al. <b>Deterioration of silver alloy electrode caused by photocatalytic reaction for crystalline silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112249.</p><p>Madumelu C, Cai Y, Hollemann C, et al. <b>Assessing the stability of p</b><sup>+</sup> <b>and n</b><sup>+</sup> <b>polysilicon passivating contacts with various capping layers on p-type wafers.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112245.</p><p>Zhou XM, Lai HW, Huang T, et al. <b>Suppressing nonradiative losses in wide-band-gap perovskites affords efficient and printable all-perovskite tandem solar cells with a metal-free charge recombination layer.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(1): 502–512.</p><p>Thiesbrummel J, Pena-Camargo F, Brinkmann KO, et al. <b>Understanding and minimizing V</b><sub><b>oc</b></sub> <b>losses in all-perovskite tandem photovoltaics.</b> <i>Advanced Energy Materials</i> 2023; <b>13</b>(3): 2202674.</p><p>Liu K, Miskevich AA, Loiko VA, et al. <b>Interference effects induced by electrodes and their influences on the distribution of light field in perovskite absorber and current matching of perovskite/silicon tandem solar cell.</b> <i>Solar Energy</i> 2023; <b>252</b>: 252–259.</p><p>Liao YJ, Hsieh YC, Chen JT, et al. <b>Large-area nonfullerene organic photovoltaic modules with a high certified power conversion efficiency.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(6): 7911–7918.</p><p>Zhao X, An Q, Zhang H, et al. <b>Double asymmetric core optimizes crystal packing to enable selenophene-based acceptor with over 18% efficiency in binary organic solar cells.</b> <i>Angewandte Chemie - International Edition</i> 2023; <b>62</b>(10): e202216340.</p><p>Huang JZ, Yu HZ. <b>The high-performance organic solar cells with an improved efficiency and stability by incorporating environmental biomaterial astaxanthin.</b> <i>Electrochimica Acta</i> 2023; <b>439</b>: 141684.</p><p>Sun R, Wang T, Fan Q, et al. <b>18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor.</b> <i>Joule</i> 2023; <b>7</b>(1): 221–237.</p><p>Bi PQ, An CB, Zhang T, et al. <b>Achieving 31% efficiency in organic photovoltaic cells under indoor light using a low energetic disorder polymer donor.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(2): 983–991.</p><p>Heng W, Weihua L, Bachagha K. <b>Recent progress in flexible electrodes and textile shaped devices for organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(3): 1039–1060.</p><p>Luke J, Jo YR, Lin CT, et al. <b>The molecular origin of high performance in ternary organic photovoltaics identified using a combination of in situ structural probes.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(3): 1281–1289.</p><p>Shen Q, He CL, Li SX, et al. <b>Mapping polymer donors with a non-fused acceptor possessing outward branched alkyl chains for efficient organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(7): 3575–3583.</p><p>Kim GH, Lee C, Kim K, et al. <b>Novel structural feature-descriptor platform for machine learning to accelerate the development of organic photovoltaics.</b> <i>Nano Energy</i> 2023; <b>106</b>: 108108.</p><p>Xie CC, Xiao CY, Fang J, et al. <b>Core/shell AgNWs@SnO</b><sub><b>x</b></sub> <b>electrodes for high performance flexible indoor organic solar cells with &gt;25% efficiency.</b> <i>Nano Energy</i> 2023; <b>107</b>: 108153.</p><p>Mahalingam S, Manap A, Rabeya R, et al. <b>Electron transport of chemically treated graphene quantum dots-based dye-sensitized solar cells.</b> <i>Electrochimica Acta</i> 2023; <b>439</b>: 141667.</p><p>Bonomo M, Zarate AYS, Fagiolari L, et al. <b>Unreported resistance in charge transport limits the photoconversion efficiency of aqueous dye-sensitised solar cells: An electrochemical impedance spectroscopy study.</b> <i>Materials Today Sustainability</i> 2023; <b>21</b>: 100271.</p><p>Zhao Q, Lai C, Zhang H, et al. <b>A broad-spectrum solar energy power system by hybridizing stirling-like thermocapacitive cycles to dye-sensitized solar cells.</b> <i>Renewable Energy</i> 2023; <b>205</b>: 94–104.</p><p>Castro-Mendez AF, Wooding JP, Fairach S, et al. <b>Vapor phase infiltration improves thermal stability of organic layers in perovskite solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(1): 844–852.</p><p>Yuan L, Sun X, Zhang XL, et al. <b>Targeted design of surface configuration on CsPbI</b><sub><b>3</b></sub> <b>perovskite nanocrystals for high-efficiency photovoltaics.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(1): 241–249.</p><p>Chen ZY, Dhakal TP. <b>Room temperature synthesis of lead-free FASnI</b><sub><b>3</b></sub> <b>perovskite nanocrystals with improved stability by SnF</b><sub><b>2</b></sub> <b>additive.</b> <i>Applied Physics Reviews</i> 2023; <b>10</b>(1): 011404.</p><p>Lee DK, Park NG. <b>Additive engineering for highly efficient and stable perovskite solar cells.</b> <i>Applied Physics Reviews</i> 2023; <b>10</b>(1): 011308.</p><p>Cheng N, Liu Z, Li WW, et al. <b>Cu</b><sub><b>2</b></sub><b>ZnGeS</b><sub><b>4</b></sub> <b>as a novel hole transport material for carbon-based perovskite solar cells with power conversion efficiency above 18%.</b> <i>Chemical Engineering Journal</i> 2023; <b>454</b>:140146.</p><p>Lee JH, Kim D, Opoku H, et al. <b>Ethylene glycol-containing ammonium salt for developing highly compatible interfaces in perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>455</b>: 140833.</p><p>Sun JY, Jin YZ, Liu QJ, et al. <b>Surface-modification-induced synergies of crystal growth and defect passivation toward CsPbI</b><sub><b>2</b></sub><b>Br solar cells with efficiency exceeding 17%.</b> <i>Chemical Engineering Journal</i> 2023; <b>457</b>: 141300.</p><p>Alharbi EA, Krishna A, Lempesis N, et al. <b>Cooperative passivation of perovskite solar cells by alkyldimethylammonium halide amphiphiles.</b> <i>Joule</i> 2023; <b>7</b>(1): 183–200.</p><p>Holzhey P, Prettl M, Collavini S, et al. <b>Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics.</b> <i>Joule</i> 2023; <b>7</b>(2): 257–271.</p><p>Wu Y, Xu G, Xi J, et al. <b>In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency.</b> <i>Joule</i> 2023; <b>7</b>(2): 398–415.</p><p>Yang ZQ, Niu YJ, Zhang XX, et al. <b>Efficiency improvement of semi-transparent perovskite solar cells via crystallinity enhancement.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(6): 3070–3079.</p><p>Hanmandlu C, Paste R, Tsai H, et al. <b>3D nanographene precursor suppress interfacial recombination in PEDOT:PSS based perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>107</b>: 108136.</p><p>Zhang JD, Li C, Zhu MQ, et al. <b>Stable and environmentally friendly perovskite solar cells induced by grain boundary engineering with self-assembled hydrogen-bonded porous frameworks.</b> <i>Nano Energy</i> 2023; <b>108</b>: 108217.</p><p>Yang T, Gao L, Lu J, et al. <b>One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 839.</p><p>Cao JL, Fang ZM, Liu SZ. <b>Tailoring the Cs/Br ratio for efficient and stable wide-bandgap perovskite solar cells.</b> <i>Solar RRL</i> 2023; <b>7</b>(2): 2200955.</p><p>Ul Ain Q, Xia JX, Kanda H, et al. <b>Transparent liquid crystal hole-transporting material for stable perovskite solar cells.</b> <i>Solar RRL</i> 2023; <b>7</b>(2): 2200920.</p><p>Yussuf ST, Nwambaekwe KC, Ramoroka ME, et al. <b>Photovoltaic efficiencies of microwave and Cu</b><sub><b>2</b></sub><b>ZnSnS</b><sub><b>4</b></sub> <b>(CZTS) superstrate solar cells.</b> <i>Materials Today Sustainability</i> 2023; <b>21</b>: 100287.</p><p>Ahmad Raza H, Ibne Mahmood F, TamizhMani G. <b>Use of non-contact voltmeter to quantify potential induced degradation in CdTe modules.</b> <i>Solar Energy</i> 2023; <b>252</b>: 284–290.</p><p>Urbaniak A, Czudek A, Eslam A, et al. <b>Consequences of grain boundary barriers on electrical characteristics of CIGS solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112252.</p><p>Zhou Z, Pu Y, Liu W, et al. <b>Assembly and synthesis mechanism of CdSe quantum dots in recombinant escherichia coli expressing metallothionein.</b> <i>Acs Sustainable Chemistry and Engineering</i> 2023; <b>11</b>(1): 113–121.</p><p>Bafti A, Mandic V, Panzic I, et al. <b>CdSe QDs modified cellulose microfibrils for enhanced humidity sensing properties.</b> <i>Applied Surface Science</i> 2023; <b>612</b>: 155894.</p><p>Yang HS, Lee D, Suh EH, et al. <b>Facile low-energy and open-air synthesis of mixed-cation perovskite quantum dots for high-performance solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>457</b>: 141107.</p><p>Liu JW, Wang JJ, Liu Y, et al. <b>Toward efficient hybrid solar cells comprising quantum dots and organic materials: Progress, strategies, and perspectives.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(3): 1013–1038.</p><p>Chen Q, Li XY, Zhang ZJ, et al. <b>Remote sensing of photovoltaic scenarios: Techniques, applications and future directions.</b> <i>Applied Energy</i> 2023; <b>333</b>: 120579.</p><p>Raillani B, Salhi M, Chaatouf D, et al. <b>A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height.</b> <i>Applied Energy</i> 2023; <b>331</b>: 120403.</p><p>He BH, Lu H, Zheng CX, et al. <b>Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review.</b> <i>Energy</i> 2023; <b>263</b>: 126083.</p><p>Ragb O, Bakr H. <b>A new technique for estimation of photovoltaic system and tracking power peaks of PV array under partial shading.</b> <i>Energy</i> 2023; <b>268</b>: 126680.</p><p>Peng DK, Fang ZL, Yu XF, et al. <b>Characteristic analysis of patterned photovoltaic modules for building integration.</b> <i>Energy Conversion and Management</i> 2023; <b>276</b>: 116524.</p><p>Manna S, Singh DK, Akella AK, et al. <b>Design and implementation of a new adaptive MPPT controller for solar PV systems.</b> <i>Energy Reports</i> 2023; <b>9</b>: 1818–1829.</p><p>Song H, Al Khafaf N, Kamoona A, et al. <b>Multitasking recurrent neural network for photovoltaic power generation prediction.</b> <i>Energy Reports</i> 2023; <b>9</b>: 369–376.</p><p>Alcaide AM, Ko Y, Andresen M, et al. <b>Capacitor lifetime extension of interleaved DC–DC converters for multistring PV systems.</b> <i>IEEE Transactions on Industrial Electronics</i> 2023; <b>70</b>(5): 4854–4864.</p><p>Bi Q, Zhou GH, Tian QX. <b>Improved flexible power point tracking algorithm for PV system under fast-changing irradiance conditions.</b> <i>IEEE Transactions on Power Electronics</i> 2023; <b>38</b>(3): 4061–4071.</p><p>Li JJ, Zhang CH, Sun B. <b>Two-stage hybrid deep learning with strong adaptability for detailed day-ahead photovoltaic power forecasting.</b> <i>IEEE Transactions on Sustainable Energy</i> 2023; <b>14</b>(1): 193–205.</p><p>Limouni T, Yaagoubi R, Bouziane K, et al. <b>Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model.</b> <i>Renewable Energy</i> 2023; <b>205</b>: 1010–1024.</p><p>Chandra Mahato G, Ranjan Biswal S, Roy Choudhury T, et al. <b>Review of active power control techniques considering the impact of MPPT and FPPT during high PV penetration.</b> <i>Solar Energy</i> 2023; <b>251</b>: 404–419.</p><p>Khalid HM, Rafique Z, Muyeen SM, et al. <b>Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution.</b> <i>Solar Energy</i> 2023; <b>251</b>: 261–285.</p><p>Mahmood Fi, TamizhMani G. <b>Impact of different backsheets and encapsulant types on potential induced degradation (PID) of silicon PV modules.</b> <i>Solar Energy</i> 2023; <b>252</b>: 20–28.</p><p>Mannino G, Tina GM, Cacciato M, et al. <b>A photovoltaic degradation evaluation method applied to bifacial modules.</b> <i>Solar Energy</i> 2023; <b>251</b>: 39–50.</p><p>Oliveira AKVd, Bracht MK, Aghaei M, et al. <b>Automatic fault detection of utility-scale photovoltaic solar generators applying aerial infrared thermography and orthomosaicking.</b> <i>Solar Energy</i> 2023; <b>252</b>: 272–283.</p><p>Ratnaparkhi A, Dave D, Valerino M, et al. <b>Quantifying the accuracy of optical transmission loss techniques and identifying the best wavelengths for estimating soiling in a field study.</b> <i>Solar Energy</i> 2023; <b>252</b>: 391–400.</p><p>Divya A, Adish T, Kaustubh P, et al. <b>Review on recycling of solar modules/panels.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112151.</p><p>Amini Toosi H, Del Pero C, Leonforte F, et al. <b>Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization.</b> <i>Applied Energy</i> 2023; <b>334</b>: 120648.</p><p>Castillejo-Cuberos A, Cardemil JM, Escobar R. <b>Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage.</b> <i>Applied Energy</i> 2023; <b>334</b>: 120712.</p><p>Fathy A. <b>Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles.</b> <i>Applied Energy</i> 2023; <b>334</b>: 120688.</p><p>Le TS, Nguyen TN, Bui DK, et al. <b>Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage.</b> <i>Applied Energy</i> 2023; <b>336</b>: 120817.</p><p>May R, Huang P. <b>A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets.</b> <i>Applied Energy</i> 2023; <b>334</b>: 120705.</p><p>Mayer MJ, Biró B, Szücs B, et al. <b>Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning.</b> <i>Applied Energy</i> 2023; <b>336</b>: 120801.</p><p>Sommerfeldt N, Pearce JM. <b>Can grid-tied solar photovoltaics lead to residential heating electrification? A techno-economic case study in the midwestern U.S.</b> <i>Applied Energy</i> 2023; <b>336</b>: 120838.</p><p>Bodong S, Wiseong J, Chengmeng L, et al. <b>Economic management and planning based on a probabilistic model in a multi-energy market in the presence of renewable energy sources with a demand-side management program.</b> <i>Energy</i> 2023; <b>269</b>: 126549.</p><p>Bórawski P, Holden L, Bełdycka-Bórawska A. <b>Perspectives of photovoltaic energy market development in the european union.</b> <i>Energy</i> 2023; <b>270</b>: 126804.</p><p>Guo XP, Dong YN, Ren DF. <b>CO</b><sub><b>2</b></sub> <b>emission reduction effect of photovoltaic industry through 2060 in China.</b> <i>Energy</i> 2023; <b>269</b>: 126692.</p><p>Han JM, Lim S, Malkawi A, et al. <b>Data-informed building energy management (DiBEM) towards ultra-low energy buildings.</b> <i>Energy and Buildings</i> 2023; <b>281</b>: 112761.</p><p>Li Y, Chen K, Ding R, et al. <b>How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China.</b> <i>Energy Economics</i> 2023; <b>118</b>: 106514.</p><p>Hammerle M, White LV, Sturmberg B. <b>Solar for renters: Investigating investor perspectives of barriers and policies.</b> <i>Energy Policy</i> 2023; <b>174</b>: 113417.</p><p>Tan Y, Ying XY, Gao WJ, et al. <b>Applying an extended theory of planned behavior to predict willingness to pay for green and low-carbon energy transition.</b> <i>Journal of Cleaner Production</i> 2023; <b>387</b>: 135893.</p><p>Fox N. <b>Increasing solar entitlement and decreasing energy vulnerability in a low-income community by adopting the prosuming project.</b> <i>Nature Energy</i> 2023; <b>8</b>(1): 74–83.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 6","pages":"645-648"},"PeriodicalIF":8.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3692","citationCount":"0","resultStr":"{\"title\":\"Photovoltaics literature survey (No. 183)\",\"authors\":\"Ziv Hameiri\",\"doi\":\"10.1002/pip.3692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions, please email Ziv Hameiri (<span>[email protected]</span>).</p><p>Gupta D, Veerender P, Sridevi C, et al. <b>Study of bias-induced degradation mechanism in perovskite CH</b><sub><b>3</b></sub><b>NH</b><sub><b>3</b></sub><b>PbI</b><sub><b>3-x</b></sub><b>Cl</b><sub><b>x</b></sub> <b>solar cells by electroluminescence spectroscopy.</b> <i>Applied Physics A-Materials Science and Processing</i> 2023; <b>129</b>(2): 127.</p><p>Li YY, Jia ZL, Yang YJ, et al. <b>Shallow traps-induced ultra-long lifetime of metal halide perovskites probed with light-biased time-resolved microwave conductivity.</b> <i>Applied Physics Reviews</i> 2023; <b>10</b>(1): 011406.</p><p>Zhao XL, Song CH, Zhang HF, et al. <b>HRNet-based automatic identification of photovoltaic module defects using electroluminescence images.</b> <i>Energy</i> 2023; <b>267</b>:126605.</p><p>Puranik VE, Kumar R, Gupta R. <b>Generalized quantitative electroluminescence method for the performance evaluation of defective and unevenly degraded crystalline silicon photovoltaic module.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(3): 269–282.</p><p>Zhang Y, Monokroussos C, Wilterdink H, et al. <b>Interlaboratory comparison of voltage sweep methods used for the electrical characterization of encapsulated high-efficiency c-Si solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(3): 237–250.</p><p>Javier GMN, Dwivedi P, Buratti Y, et al. <b>Improvements and gaps in the empirical expressions for the fill factor of modern industrial solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>:112183.</p><p>Chang NL, Poduval GK, Sang B, et al. <b>Techno-economic analysis of the use of atomic layer deposited transition metal oxides in silicon heterojunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 414–428.</p><p>Glunz SW, Steinhauser B, Polzin J-I, et al. <b>Silicon-based passivating contacts: The TOPCon route.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 341–359.</p><p>Ibarra Michel J, Dréon J, Boccard M, et al. <b>Carrier-selective contacts using metal compounds for crystalline silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 380–413.</p><p>Liao B, Wu W, Yeo RJ, et al. <b>Atomic scale controlled tunnel oxide enabled by a novel industrial tube-based PEALD technology with demonstrated commercial TOPCon cell efficiencies &gt;24%.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(3): 220–229.</p><p>Nandakumar N, Rodriguez JW, Padhamnath P, et al. <b>Large-area monoPoly solar cells on 110 μm thin c–Si wafers with a rear n</b><sup>+</sup><b>poly-Si/SiO</b><sub><b>x</b></sub> <b>stack deposited by inline plasma-enhanced chemical vapour deposition.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 360–368.</p><p>Peibst R, Haase F, Min B, et al. <b>On the chances and challenges of combining electron-collecting nPOLO and hole-collecting Al-p</b><sup>+</sup> <b>contacts in highly efficient p-type c-Si solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 327–340.</p><p>Rehman Au, Van Kerschaver EP, Aydin E, et al. <b>Electrode metallization for scaled perovskite/silicon tandem solar cells: Challenges and opportunities.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 429–442.</p><p>Yan D, Cuevas A, Stuckelberger J, et al. <b>Silicon solar cells with passivating contacts: Classification and performance.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 310–326.</p><p>Zhang X, Dumbrell R, Li W, et al. <b>Mass production of crystalline silicon solar cells with polysilicon-based passivating contacts: An industrial perspective.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(4): 369–379.</p><p>Du H, Wang T, Zeng Y, et al. <b>Improved contact quality for silver-free silicon heterojunction solar cells by phosphoric acid treatment.</b> <i>Solar Energy</i> 2023; <b>252</b>:1–7.</p><p>Ganesan K, Winston DP, Sugumar S, et al. <b>Performance analysis of n-type PERT bifacial solar PV module under diverse albedo conditions.</b> <i>Solar Energy</i> 2023; <b>252</b>: 81–90.</p><p>Ding D, Du Z, Liu R, et al. <b>Laser doping selective emitter with thin borosilicate glass layer for n-type TOPCon c-Si solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112230.</p><p>Jiang X, Wang H, Huang X, et al. <b>Deterioration of silver alloy electrode caused by photocatalytic reaction for crystalline silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112249.</p><p>Madumelu C, Cai Y, Hollemann C, et al. <b>Assessing the stability of p</b><sup>+</sup> <b>and n</b><sup>+</sup> <b>polysilicon passivating contacts with various capping layers on p-type wafers.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112245.</p><p>Zhou XM, Lai HW, Huang T, et al. <b>Suppressing nonradiative losses in wide-band-gap perovskites affords efficient and printable all-perovskite tandem solar cells with a metal-free charge recombination layer.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(1): 502–512.</p><p>Thiesbrummel J, Pena-Camargo F, Brinkmann KO, et al. <b>Understanding and minimizing V</b><sub><b>oc</b></sub> <b>losses in all-perovskite tandem photovoltaics.</b> <i>Advanced Energy Materials</i> 2023; <b>13</b>(3): 2202674.</p><p>Liu K, Miskevich AA, Loiko VA, et al. <b>Interference effects induced by electrodes and their influences on the distribution of light field in perovskite absorber and current matching of perovskite/silicon tandem solar cell.</b> <i>Solar Energy</i> 2023; <b>252</b>: 252–259.</p><p>Liao YJ, Hsieh YC, Chen JT, et al. <b>Large-area nonfullerene organic photovoltaic modules with a high certified power conversion efficiency.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(6): 7911–7918.</p><p>Zhao X, An Q, Zhang H, et al. <b>Double asymmetric core optimizes crystal packing to enable selenophene-based acceptor with over 18% efficiency in binary organic solar cells.</b> <i>Angewandte Chemie - International Edition</i> 2023; <b>62</b>(10): e202216340.</p><p>Huang JZ, Yu HZ. <b>The high-performance organic solar cells with an improved efficiency and stability by incorporating environmental biomaterial astaxanthin.</b> <i>Electrochimica Acta</i> 2023; <b>439</b>: 141684.</p><p>Sun R, Wang T, Fan Q, et al. <b>18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor.</b> <i>Joule</i> 2023; <b>7</b>(1): 221–237.</p><p>Bi PQ, An CB, Zhang T, et al. <b>Achieving 31% efficiency in organic photovoltaic cells under indoor light using a low energetic disorder polymer donor.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(2): 983–991.</p><p>Heng W, Weihua L, Bachagha K. <b>Recent progress in flexible electrodes and textile shaped devices for organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(3): 1039–1060.</p><p>Luke J, Jo YR, Lin CT, et al. <b>The molecular origin of high performance in ternary organic photovoltaics identified using a combination of in situ structural probes.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(3): 1281–1289.</p><p>Shen Q, He CL, Li SX, et al. <b>Mapping polymer donors with a non-fused acceptor possessing outward branched alkyl chains for efficient organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(7): 3575–3583.</p><p>Kim GH, Lee C, Kim K, et al. <b>Novel structural feature-descriptor platform for machine learning to accelerate the development of organic photovoltaics.</b> <i>Nano Energy</i> 2023; <b>106</b>: 108108.</p><p>Xie CC, Xiao CY, Fang J, et al. <b>Core/shell AgNWs@SnO</b><sub><b>x</b></sub> <b>electrodes for high performance flexible indoor organic solar cells with &gt;25% efficiency.</b> <i>Nano Energy</i> 2023; <b>107</b>: 108153.</p><p>Mahalingam S, Manap A, Rabeya R, et al. <b>Electron transport of chemically treated graphene quantum dots-based dye-sensitized solar cells.</b> <i>Electrochimica Acta</i> 2023; <b>439</b>: 141667.</p><p>Bonomo M, Zarate AYS, Fagiolari L, et al. <b>Unreported resistance in charge transport limits the photoconversion efficiency of aqueous dye-sensitised solar cells: An electrochemical impedance spectroscopy study.</b> <i>Materials Today Sustainability</i> 2023; <b>21</b>: 100271.</p><p>Zhao Q, Lai C, Zhang H, et al. <b>A broad-spectrum solar energy power system by hybridizing stirling-like thermocapacitive cycles to dye-sensitized solar cells.</b> <i>Renewable Energy</i> 2023; <b>205</b>: 94–104.</p><p>Castro-Mendez AF, Wooding JP, Fairach S, et al. <b>Vapor phase infiltration improves thermal stability of organic layers in perovskite solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(1): 844–852.</p><p>Yuan L, Sun X, Zhang XL, et al. <b>Targeted design of surface configuration on CsPbI</b><sub><b>3</b></sub> <b>perovskite nanocrystals for high-efficiency photovoltaics.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(1): 241–249.</p><p>Chen ZY, Dhakal TP. <b>Room temperature synthesis of lead-free FASnI</b><sub><b>3</b></sub> <b>perovskite nanocrystals with improved stability by SnF</b><sub><b>2</b></sub> <b>additive.</b> <i>Applied Physics Reviews</i> 2023; <b>10</b>(1): 011404.</p><p>Lee DK, Park NG. <b>Additive engineering for highly efficient and stable perovskite solar cells.</b> <i>Applied Physics Reviews</i> 2023; <b>10</b>(1): 011308.</p><p>Cheng N, Liu Z, Li WW, et al. <b>Cu</b><sub><b>2</b></sub><b>ZnGeS</b><sub><b>4</b></sub> <b>as a novel hole transport material for carbon-based perovskite solar cells with power conversion efficiency above 18%.</b> <i>Chemical Engineering Journal</i> 2023; <b>454</b>:140146.</p><p>Lee JH, Kim D, Opoku H, et al. <b>Ethylene glycol-containing ammonium salt for developing highly compatible interfaces in perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>455</b>: 140833.</p><p>Sun JY, Jin YZ, Liu QJ, et al. <b>Surface-modification-induced synergies of crystal growth and defect passivation toward CsPbI</b><sub><b>2</b></sub><b>Br solar cells with efficiency exceeding 17%.</b> <i>Chemical Engineering Journal</i> 2023; <b>457</b>: 141300.</p><p>Alharbi EA, Krishna A, Lempesis N, et al. <b>Cooperative passivation of perovskite solar cells by alkyldimethylammonium halide amphiphiles.</b> <i>Joule</i> 2023; <b>7</b>(1): 183–200.</p><p>Holzhey P, Prettl M, Collavini S, et al. <b>Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics.</b> <i>Joule</i> 2023; <b>7</b>(2): 257–271.</p><p>Wu Y, Xu G, Xi J, et al. <b>In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency.</b> <i>Joule</i> 2023; <b>7</b>(2): 398–415.</p><p>Yang ZQ, Niu YJ, Zhang XX, et al. <b>Efficiency improvement of semi-transparent perovskite solar cells via crystallinity enhancement.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(6): 3070–3079.</p><p>Hanmandlu C, Paste R, Tsai H, et al. <b>3D nanographene precursor suppress interfacial recombination in PEDOT:PSS based perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>107</b>: 108136.</p><p>Zhang JD, Li C, Zhu MQ, et al. <b>Stable and environmentally friendly perovskite solar cells induced by grain boundary engineering with self-assembled hydrogen-bonded porous frameworks.</b> <i>Nano Energy</i> 2023; <b>108</b>: 108217.</p><p>Yang T, Gao L, Lu J, et al. <b>One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 839.</p><p>Cao JL, Fang ZM, Liu SZ. <b>Tailoring the Cs/Br ratio for efficient and stable wide-bandgap perovskite solar cells.</b> <i>Solar RRL</i> 2023; <b>7</b>(2): 2200955.</p><p>Ul Ain Q, Xia JX, Kanda H, et al. <b>Transparent liquid crystal hole-transporting material for stable perovskite solar cells.</b> <i>Solar RRL</i> 2023; <b>7</b>(2): 2200920.</p><p>Yussuf ST, Nwambaekwe KC, Ramoroka ME, et al. <b>Photovoltaic efficiencies of microwave and Cu</b><sub><b>2</b></sub><b>ZnSnS</b><sub><b>4</b></sub> <b>(CZTS) superstrate solar cells.</b> <i>Materials Today Sustainability</i> 2023; <b>21</b>: 100287.</p><p>Ahmad Raza H, Ibne Mahmood F, TamizhMani G. <b>Use of non-contact voltmeter to quantify potential induced degradation in CdTe modules.</b> <i>Solar Energy</i> 2023; <b>252</b>: 284–290.</p><p>Urbaniak A, Czudek A, Eslam A, et al. <b>Consequences of grain boundary barriers on electrical characteristics of CIGS solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112252.</p><p>Zhou Z, Pu Y, Liu W, et al. <b>Assembly and synthesis mechanism of CdSe quantum dots in recombinant escherichia coli expressing metallothionein.</b> <i>Acs Sustainable Chemistry and Engineering</i> 2023; <b>11</b>(1): 113–121.</p><p>Bafti A, Mandic V, Panzic I, et al. <b>CdSe QDs modified cellulose microfibrils for enhanced humidity sensing properties.</b> <i>Applied Surface Science</i> 2023; <b>612</b>: 155894.</p><p>Yang HS, Lee D, Suh EH, et al. <b>Facile low-energy and open-air synthesis of mixed-cation perovskite quantum dots for high-performance solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>457</b>: 141107.</p><p>Liu JW, Wang JJ, Liu Y, et al. <b>Toward efficient hybrid solar cells comprising quantum dots and organic materials: Progress, strategies, and perspectives.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(3): 1013–1038.</p><p>Chen Q, Li XY, Zhang ZJ, et al. <b>Remote sensing of photovoltaic scenarios: Techniques, applications and future directions.</b> <i>Applied Energy</i> 2023; <b>333</b>: 120579.</p><p>Raillani B, Salhi M, Chaatouf D, et al. <b>A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height.</b> <i>Applied Energy</i> 2023; <b>331</b>: 120403.</p><p>He BH, Lu H, Zheng CX, et al. <b>Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review.</b> <i>Energy</i> 2023; <b>263</b>: 126083.</p><p>Ragb O, Bakr H. <b>A new technique for estimation of photovoltaic system and tracking power peaks of PV array under partial shading.</b> <i>Energy</i> 2023; <b>268</b>: 126680.</p><p>Peng DK, Fang ZL, Yu XF, et al. <b>Characteristic analysis of patterned photovoltaic modules for building integration.</b> <i>Energy Conversion and Management</i> 2023; <b>276</b>: 116524.</p><p>Manna S, Singh DK, Akella AK, et al. <b>Design and implementation of a new adaptive MPPT controller for solar PV systems.</b> <i>Energy Reports</i> 2023; <b>9</b>: 1818–1829.</p><p>Song H, Al Khafaf N, Kamoona A, et al. <b>Multitasking recurrent neural network for photovoltaic power generation prediction.</b> <i>Energy Reports</i> 2023; <b>9</b>: 369–376.</p><p>Alcaide AM, Ko Y, Andresen M, et al. <b>Capacitor lifetime extension of interleaved DC–DC converters for multistring PV systems.</b> <i>IEEE Transactions on Industrial Electronics</i> 2023; <b>70</b>(5): 4854–4864.</p><p>Bi Q, Zhou GH, Tian QX. <b>Improved flexible power point tracking algorithm for PV system under fast-changing irradiance conditions.</b> <i>IEEE Transactions on Power Electronics</i> 2023; <b>38</b>(3): 4061–4071.</p><p>Li JJ, Zhang CH, Sun B. <b>Two-stage hybrid deep learning with strong adaptability for detailed day-ahead photovoltaic power forecasting.</b> <i>IEEE Transactions on Sustainable Energy</i> 2023; <b>14</b>(1): 193–205.</p><p>Limouni T, Yaagoubi R, Bouziane K, et al. <b>Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model.</b> <i>Renewable Energy</i> 2023; <b>205</b>: 1010–1024.</p><p>Chandra Mahato G, Ranjan Biswal S, Roy Choudhury T, et al. <b>Review of active power control techniques considering the impact of MPPT and FPPT during high PV penetration.</b> <i>Solar Energy</i> 2023; <b>251</b>: 404–419.</p><p>Khalid HM, Rafique Z, Muyeen SM, et al. <b>Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution.</b> <i>Solar Energy</i> 2023; <b>251</b>: 261–285.</p><p>Mahmood Fi, TamizhMani G. <b>Impact of different backsheets and encapsulant types on potential induced degradation (PID) of silicon PV modules.</b> <i>Solar Energy</i> 2023; <b>252</b>: 20–28.</p><p>Mannino G, Tina GM, Cacciato M, et al. <b>A photovoltaic degradation evaluation method applied to bifacial modules.</b> <i>Solar Energy</i> 2023; <b>251</b>: 39–50.</p><p>Oliveira AKVd, Bracht MK, Aghaei M, et al. <b>Automatic fault detection of utility-scale photovoltaic solar generators applying aerial infrared thermography and orthomosaicking.</b> <i>Solar Energy</i> 2023; <b>252</b>: 272–283.</p><p>Ratnaparkhi A, Dave D, Valerino M, et al. <b>Quantifying the accuracy of optical transmission loss techniques and identifying the best wavelengths for estimating soiling in a field study.</b> <i>Solar Energy</i> 2023; <b>252</b>: 391–400.</p><p>Divya A, Adish T, Kaustubh P, et al. <b>Review on recycling of solar modules/panels.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>253</b>: 112151.</p><p>Amini Toosi H, Del Pero C, Leonforte F, et al. <b>Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization.</b> <i>Applied Energy</i> 2023; <b>334</b>: 120648.</p><p>Castillejo-Cuberos A, Cardemil JM, Escobar R. <b>Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage.</b> <i>Applied Energy</i> 2023; <b>334</b>: 120712.</p><p>Fathy A. <b>Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles.</b> <i>Applied Energy</i> 2023; <b>334</b>: 120688.</p><p>Le TS, Nguyen TN, Bui DK, et al. <b>Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage.</b> <i>Applied Energy</i> 2023; <b>336</b>: 120817.</p><p>May R, Huang P. <b>A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets.</b> <i>Applied Energy</i> 2023; <b>334</b>: 120705.</p><p>Mayer MJ, Biró B, Szücs B, et al. <b>Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning.</b> <i>Applied Energy</i> 2023; <b>336</b>: 120801.</p><p>Sommerfeldt N, Pearce JM. <b>Can grid-tied solar photovoltaics lead to residential heating electrification? A techno-economic case study in the midwestern U.S.</b> <i>Applied Energy</i> 2023; <b>336</b>: 120838.</p><p>Bodong S, Wiseong J, Chengmeng L, et al. <b>Economic management and planning based on a probabilistic model in a multi-energy market in the presence of renewable energy sources with a demand-side management program.</b> <i>Energy</i> 2023; <b>269</b>: 126549.</p><p>Bórawski P, Holden L, Bełdycka-Bórawska A. <b>Perspectives of photovoltaic energy market development in the european union.</b> <i>Energy</i> 2023; <b>270</b>: 126804.</p><p>Guo XP, Dong YN, Ren DF. <b>CO</b><sub><b>2</b></sub> <b>emission reduction effect of photovoltaic industry through 2060 in China.</b> <i>Energy</i> 2023; <b>269</b>: 126692.</p><p>Han JM, Lim S, Malkawi A, et al. <b>Data-informed building energy management (DiBEM) towards ultra-low energy buildings.</b> <i>Energy and Buildings</i> 2023; <b>281</b>: 112761.</p><p>Li Y, Chen K, Ding R, et al. <b>How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China.</b> <i>Energy Economics</i> 2023; <b>118</b>: 106514.</p><p>Hammerle M, White LV, Sturmberg B. <b>Solar for renters: Investigating investor perspectives of barriers and policies.</b> <i>Energy Policy</i> 2023; <b>174</b>: 113417.</p><p>Tan Y, Ying XY, Gao WJ, et al. <b>Applying an extended theory of planned behavior to predict willingness to pay for green and low-carbon energy transition.</b> <i>Journal of Cleaner Production</i> 2023; <b>387</b>: 135893.</p><p>Fox N. <b>Increasing solar entitlement and decreasing energy vulnerability in a low-income community by adopting the prosuming project.</b> <i>Nature Energy</i> 2023; <b>8</b>(1): 74–83.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"31 6\",\"pages\":\"645-648\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3692\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3692\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3692","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了帮助读者了解该领域的最新情况,每期的《光伏进展》都将包含与其目标和范围最相关的最近发表的期刊文章列表。这份名单来自范围极其广泛的期刊,包括IEEE光伏杂志、太阳能材料和太阳能电池、可再生能源、可再生和可持续能源评论、应用物理杂志和应用物理快报。为了帮助读者,我们将该列表分为几个大类,但请注意,这些分类并不严格。还要注意的是,被列入名单并不代表论文的质量得到认可。如果你有任何建议,请发邮件给Ziv Hameiri ([email protected])。Gupta D, Veerender P, Sridevi C,等。电致发光光谱法研究钙钛矿CH3NH3PbI3-xClx太阳能电池偏压诱导降解机理。应用物理a -材料科学与加工2023;129(2): 127。李云云,贾志林,杨玉军,等。用偏光时间分辨微波电导率探测浅阱诱导的超长寿命金属卤化物钙钛矿。应用物理评论2023;10(1): 011406。赵晓玲,宋超,张洪峰,等。基于hrnet的光电组件缺陷电致发光图像自动识别。能源2023;267:126605。张建军,李建军,李建军,等。基于电致发光的晶体硅光电组件性能评价方法。光伏技术进展:研究与应用2023;31(3): 269 - 282。张勇,Monokroussos C, Wilterdink H,等。用于封装高效c-Si太阳能电池电学特性的电压扫描方法的实验室间比较。光伏技术进展:研究与应用2023;31(3): 237 - 250。Javier GMN, Dwivedi P, Buratti Y,等。现代工业太阳能电池填充系数经验表达式的改进与不足。太阳能材料和太阳能电池2023;253:112183。张乃林,Poduval GK, Sang B,等。原子层沉积过渡金属氧化物在硅异质结太阳能电池中的应用技术经济分析。光伏技术进展:研究与应用2023;31(4): 414 - 428。张建军,张建军,张建军,等。硅钝化触点:TOPCon路由。光伏技术进展:研究与应用2023;31(4): 341 - 359。Ibarra Michel J, dracimon J, Boccard M,等。晶体硅太阳能电池用金属化合物的载流子选择性触点。光伏技术进展:研究与应用2023;31(4): 380 - 413。廖波,吴伟,杨荣军,等。一种新型的工业管基PEALD技术实现了原子尺度控制的隧道氧化物,其商业化的TOPCon电池效率为24%。光伏技术进展:研究与应用2023;31(3): 220 - 229。Nandakumar N, Rodriguez JW, Padhamnath P,等。采用内嵌等离子体增强化学气相沉积技术,在110 μm薄的c-Si晶片上采用后n+多晶硅/SiOx叠层沉积大面积monoPoly太阳能电池。光伏技术进展:研究与应用2023;31(4): 360 - 368。Peibst R, Haase F, Min B,等。高效p型c-Si太阳能电池中电子收集nPOLO与空穴收集Al-p+触点结合的机遇与挑战光伏技术进展:研究与应用2023;31(4): 327 - 340。Rehman Au, Van Kerschaver EP, Aydin E,等。钙钛矿/硅串联太阳能电池的电极金属化:挑战与机遇。光伏技术进展:研究与应用2023;31(4): 429 - 442。李建军,李建军,李建军,等。具有钝化触点的硅太阳能电池:分类和性能。光伏技术进展:研究与应用2023;31(4): 310 - 326。张欣,Dumbrell R,李伟,等。具有多晶硅基钝化触点的晶体硅太阳能电池的大规模生产:工业前景。光伏技术进展:研究与应用2023;31(4): 369 - 379。杜华,王涛,曾勇,等。磷酸处理改善无银硅异质结太阳能电池的接触质量。太阳能2023;252:1-7。Ganesan K, Winston DP, Sugumar S等。不同反照率条件下n型PERT双面太阳能光伏组件性能分析。太阳能2023;252: 81 - 90。丁东,杜志,刘锐,等。n型TOPCon c-Si太阳能电池用薄硼硅玻璃层激光掺杂选择性发射极。太阳能材料和太阳能电池2023;253: 112230。姜鑫,王辉,黄鑫,等。晶体硅太阳能电池光催化反应引起的银合金电极劣化。太阳能材料和太阳能电池2023;253: 112249。Madumelu C, Cai Y, Hollemann C,等。评价p型晶圆上不同封盖层的p+和n+多晶硅钝化触点的稳定性。 太阳能材料和太阳能电池2023;253: 112245。周晓明,赖华伟,黄涛,等。抑制宽带隙钙钛矿的非辐射损耗提供了具有无金属电荷复合层的高效可印刷的全钙钛矿串联太阳能电池。Acs Energy Letters 2023;8(1): 502 - 512。刘建军,刘建军,刘建军,等。了解并减少全钙钛矿串联光伏电池的Voc损失。先进能源材料2023;13(3): 2202674。刘凯,刘建军,刘建军,等。电极诱导的干涉效应及其对钙钛矿吸收器光场分布和钙钛矿/硅串联太阳能电池电流匹配的影响。太阳能2023;252: 252 - 259。廖玉军,谢玉春,陈金涛,等。具有高认证功率转换效率的大面积非富勒烯有机光伏组件。ac应用材料与接口2023;15(6): 7911 - 7918。赵鑫,安强,张宏,等。双不对称核心优化晶体包装,使硒烯基受体在二元有机太阳能电池中具有超过18%的效率。Angewandte Chemie -国际版2023;62 (10): e202216340。黄建忠,于宏华。加入环境生物材料虾青素,提高了效率和稳定性的高性能有机太阳能电池。电化学学报;2023;439: 141684。孙锐,王涛,范强,等。基于氯化客体聚合物受体的18.2%效率的三元全聚合物有机太阳能电池。焦耳2023;7(1): 221 - 237。毕鹏强,安国宝,张涛,等。使用低能量无序聚合物供体在室内光下实现31%的有机光伏电池效率。材料工程学报(英文版);11(2): 983 - 991。王恒,李卫华,李伟华。有机太阳能电池柔性电极及纺织成形器件研究进展。材料工程学报(英文版);11(3): 1039 - 1060。卢杰,赵玉林,林春涛,等。利用原位结构探针的组合确定了三元有机光伏电池高性能的分子来源。材料工程学报(英文版);11(3): 1281 - 1289。沈强,何春林,李淑霞,等。用于高效有机太阳能电池的具有具有向外支链烷基链的非融合受体的聚合物给体映射。材料工程学报(英文版);11(7): 3575 - 3583。金国荣,李超,金凯,等。用于机器学习的新型结构特征描述符平台,以加速有机光伏的发展。纳米能源2023;106: 108108。谢春春,肖云云,方军,等。芯/壳AgNWs@SnOx电极用于高效柔性室内有机太阳能电池,效率&gt;25%。纳米能源2023;107: 108153。李建军,李建军,李建军,等。化学处理石墨烯量子点染料敏化太阳能电池的电子传输。电化学学报;2023;439: 141667。Bonomo M, Zarate AYS, Fagiolari L,等。未报道的电荷传输电阻限制了水染料敏化太阳能电池的光转换效率:电化学阻抗谱研究。材料今日可持续发展2023;21日:100271。赵强,赖超,张宏,等。染料敏化太阳能电池采用斯特林样热容循环杂交的广谱太阳能发电系统。2023年可再生能源;205: 94 - 104。Castro-Mendez AF, Wooding JP, Fairach S,等。气相渗透提高了钙钛矿太阳能电池有机层的热稳定性。Acs Energy Letters 2023;8(1): 844 - 852。袁磊,孙旭,张晓玲,等。高效光伏用CsPbI3钙钛矿纳米晶体表面结构的定向设计。Acs Energy Letters 2023;8(1): 241 - 249。陈志,达卡尔。室温下SnF2添加剂合成稳定性提高的无铅FASnI3钙钛矿纳米晶。应用物理评论2023;10(1): 011404。Lee DK, Park NG。高效稳定钙钛矿太阳能电池的增材工程。应用物理评论2023;10(1): 011308。程宁,刘志,李文文,等。Cu2ZnGeS4作为碳基钙钛矿太阳能电池的新型空穴传输材料,功率转换效率在18%以上。化学工程学报(英文版);454:140146。李建辉,金丹,王波,等。含乙二醇铵盐在钙钛矿太阳能电池中开发高相容性界面的研究。化学工程学报(英文版);455: 140833。孙建勇,金玉柱,刘启军,等。表面修饰诱导晶体生长和缺陷钝化对CsPbI2Br太阳能电池的协同作用效率超过17%。化学工程学报(英文版);457: 141300。Alharbi EA, Krishna A, Lempesis N等。烷基二甲基卤化铵两亲体对钙钛矿太阳能电池的协同钝化作用。焦耳2023;7(1): 183 - 200。Holzhey P, Prettl M, Collavini S,等。向商业化轻量,柔性钙钛矿太阳能电池住宅光伏。焦耳2023;7(2): 257 - 271。 吴勇,徐刚,奚健,等。柔性钙钛矿太阳能电池的原位交联辅助钙钛矿晶粒生长效率为23.4%。焦耳2023;7(2): 398 - 415。杨志强,牛玉军,张XX,等。通过增强结晶度提高半透明钙钛矿太阳能电池的效率。材料工程学报(英文版);11(6): 3070 - 3079。韩曼璐,张建军,张建军,等。纳米石墨烯前驱体抑制PEDOT:PSS基钙钛矿太阳能电池的界面重组。纳米能源2023;107: 108136。张建东,李超,朱mq,等。具有自组装氢键多孔框架的晶界工程诱导的稳定环保的钙钛矿太阳能电池。纳米能源2023;108: 108217。杨涛,高亮,陆军,等。一石二鸟策略,获得超过25%的钙钛矿太阳能电池。自然通讯2023;14(1): 839。曹建林,方志明,刘思忠。为高效稳定的宽禁带钙钛矿太阳能电池量身定制Cs/Br比率。Solar RRL 2023;7(2): 2200955。吴爱琴,夏建新,神辉,等。用于稳定钙钛矿太阳能电池的透明液晶空穴传输材料。Solar RRL 2023;7(2): 2200920。Yussuf ST, Nwambaekwe KC, Ramoroka ME,等。微波和Cu2ZnSnS4 (CZTS)叠层太阳能电池的光电效率。材料今日可持续发展2023;21日:100287。Ahmad Raza H, Ibne Mahmood F, TamizhMani G.使用非接触电压表量化CdTe模块的电位诱导退化。太阳能2023;252: 284 - 290。Urbaniak A, Czudek A, Eslam A,等。晶界障碍对CIGS太阳能电池电特性的影响。太阳能材料和太阳能电池2023;253: 112252。周忠,濮勇,刘伟,等。CdSe量子点在表达金属硫蛋白的重组大肠杆菌中的组装与合成机制Chemistry and Engineering 2023;11(1): 113 - 121。Bafti A, Mandic V, Panzic I等。CdSe量子点修饰纤维素微原纤维增强湿度传感性能。应用表面科学2023;612: 155894。杨合生,李东,徐海燕,等。用于高性能太阳能电池的混合阳离子钙钛矿量子点的简易低能量和露天合成。化学工程学报(英文版);457: 141107。刘建伟,王建军,刘勇,等。迈向由量子点和有机材料组成的高效混合太阳能电池:进展、策略和前景。材料工程学报(英文版);11(3): 1013 - 1038。陈强,李学祥,张志军,等。光伏场景遥感:技术、应用和未来方向。应用能源2023;333: 120579。Raillani B, Salhi M, Chaatouf D,等。提出了一种利用第一排高度来降低光伏阵列污染率的新方法。应用能源2023;331: 120403。何宝宝,陆华,郑彩霞,等。太阳能光伏组件积尘特性及清除方法综述能源2023;263: 126083。李建军,李建军,李建军,等。部分遮阳条件下光伏系统功率峰值估计与跟踪新技术。能源2023;268: 126680。彭德奎,方志林,于晓峰,等。建筑集成化光伏组件特性分析。能源转换与管理2023;276: 116524。Manna S, Singh DK, Akella AK等。太阳能光伏系统自适应MPPT控制器的设计与实现。2023年能源报告;9: 1818 - 1829。宋海,Al Khafaf N, Kamoona A,等。多任务递归神经网络用于光伏发电预测。2023年能源报告;9: 369 - 376。Alcaide AM, Ko Y, Andresen M,等。多串光伏系统交错DC-DC转换器电容器寿命延长。IEEE工业电子学报(英文版);70(5): 4854 - 4864。毕强,周光华,田启祥。快速变化辐照度条件下光伏系统的改进柔性功率点跟踪算法。IEEE电力电子学报(英文版);38(3): 4061 - 4071。李建军,张超,孙波。具有强适应性的两阶段混合深度学习光伏日前详细预测。IEEE可持续能源汇刊2023;14(1): 193 - 205。李建军,李建军,李建军,等。利用LSTM-TCN模型对极短期光伏发电功率进行单步和多步准确预测。2023年可再生能源;205: 1010 - 1024。Chandra Mahato G, Ranjan Biswal S, Roy Choudhury T等。考虑光伏高穿透时MPPT和FPPT影响的有功功率控制技术综述。太阳能2023;251: 404 - 419。Khalid HM, Rafique Z, Muyeen SM等。光伏电池板上的粉尘积聚和聚集:影响、数学模型、清洁机制和可能的可持续解决方案的综合调查。太阳能2023;251: 261 - 285。Mahmood Fi, TamizhMani G.不同衬底和封装类型对硅光伏组件电位诱导降解(PID)的影响。太阳能2023;252:精神分裂症一般。Mannino G, Tina GM, Cacciato M,等。 一种应用于双面组件的光伏降解评价方法。太阳能2023;251: 39-50。Oliveira AKVd, Bracht MK, Aghaei M,等。应用航空红外热像仪和正交成像技术的电站级光伏太阳能发电机组故障自动检测。太阳能2023;252: 272 - 283。Ratnaparkhi A, Dave D, Valerino M,等。量化光传输损耗技术的准确性,并在实地研究中确定估计污染的最佳波长。太阳能2023;252: 391 - 400。Divya A, Adish T, Kaustubh P,等。检讨太阳能组件/板的循环再造。太阳能材料和太阳能电池2023;253: 112151。Amini Toosi H, Del Pero C, Leonforte F,等。智能建筑性能预测的机器学习:光伏自耗和生命周期成本优化。应用能源2023;334: 120648。张建军,张建军,张建军,等。基于时间分辨率和非线性动态的光伏电站技术经济评价。应用能源2023;334: 120712。秃鹰搜索基于优化器的可再生能源和电动汽车微电网能源管理策略。应用能源2023;334: 120688。黎天祥,阮天祥,裴德奎,等。可再生能源存储的最佳规模:考虑退化和季节性存储的氢、电池和混合系统的技术经济分析。应用能源2023;336: 120817。黄平。基于多智能体强化学习的点对点生产消费者能源市场研究与优化。应用能源2023;334: 120705。杨建平,Biró B, sz<s:1> cs B,等。利用机器学习对具有高可再生能源渗透率的未来电力系统进行概率建模。应用能源2023;336: 120801。苏默菲尔德N,皮尔斯JM。并网太阳能光伏发电能否实现住宅供暖电气化?美国中西部地区技术经济案例研究336: 120838。孙伯东,金卫成,李成梦,等。具有需求侧管理方案的可再生能源多能源市场中基于概率模型的经济管理与规划能源2023;269: 126549。Bórawski P,霍顿L, Bełdycka-Bórawska A.欧盟光伏能源市场发展展望。能源2023;270: 126804。郭晓平,董勇,任峰。至2060年中国光伏产业二氧化碳减排效果分析能源2023;269: 126692。韩建明,林绍林,Malkawi A,等。基于数据的建筑能源管理(DiBEM)朝着超低能耗建筑的方向发展。能源与建筑2023;281: 112761。李勇,陈凯,丁锐,等。光伏扶贫项目如何缓解家庭能源贫困?来自中国的证据。能源经济2023;118: 106514。李建军,李建军,李建军,等。中国太阳能产业发展现状与对策研究。2023年能源政策;174: 113417。谭勇,应向阳,高文杰,等。应用扩展的计划行为理论预测绿色低碳能源转型的支付意愿。清洁生产学报(英文版);387: 135893。通过采用产电项目增加低收入社区的太阳能权利和减少能源脆弱性。自然能源2023;8(1): 74 - 83。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photovoltaics literature survey (No. 183)

In order to help readers stay up-to-date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions, please email Ziv Hameiri ([email protected]).

Gupta D, Veerender P, Sridevi C, et al. Study of bias-induced degradation mechanism in perovskite CH3NH3PbI3-xClx solar cells by electroluminescence spectroscopy. Applied Physics A-Materials Science and Processing 2023; 129(2): 127.

Li YY, Jia ZL, Yang YJ, et al. Shallow traps-induced ultra-long lifetime of metal halide perovskites probed with light-biased time-resolved microwave conductivity. Applied Physics Reviews 2023; 10(1): 011406.

Zhao XL, Song CH, Zhang HF, et al. HRNet-based automatic identification of photovoltaic module defects using electroluminescence images. Energy 2023; 267:126605.

Puranik VE, Kumar R, Gupta R. Generalized quantitative electroluminescence method for the performance evaluation of defective and unevenly degraded crystalline silicon photovoltaic module. Progress in Photovoltaics: Research and Applications 2023; 31(3): 269–282.

Zhang Y, Monokroussos C, Wilterdink H, et al. Interlaboratory comparison of voltage sweep methods used for the electrical characterization of encapsulated high-efficiency c-Si solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(3): 237–250.

Javier GMN, Dwivedi P, Buratti Y, et al. Improvements and gaps in the empirical expressions for the fill factor of modern industrial solar cells. Solar Energy Materials and Solar Cells 2023; 253:112183.

Chang NL, Poduval GK, Sang B, et al. Techno-economic analysis of the use of atomic layer deposited transition metal oxides in silicon heterojunction solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(4): 414–428.

Glunz SW, Steinhauser B, Polzin J-I, et al. Silicon-based passivating contacts: The TOPCon route. Progress in Photovoltaics: Research and Applications 2023; 31(4): 341–359.

Ibarra Michel J, Dréon J, Boccard M, et al. Carrier-selective contacts using metal compounds for crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(4): 380–413.

Liao B, Wu W, Yeo RJ, et al. Atomic scale controlled tunnel oxide enabled by a novel industrial tube-based PEALD technology with demonstrated commercial TOPCon cell efficiencies >24%. Progress in Photovoltaics: Research and Applications 2023; 31(3): 220–229.

Nandakumar N, Rodriguez JW, Padhamnath P, et al. Large-area monoPoly solar cells on 110 μm thin c–Si wafers with a rear n+poly-Si/SiOx stack deposited by inline plasma-enhanced chemical vapour deposition. Progress in Photovoltaics: Research and Applications 2023; 31(4): 360–368.

Peibst R, Haase F, Min B, et al. On the chances and challenges of combining electron-collecting nPOLO and hole-collecting Al-p+ contacts in highly efficient p-type c-Si solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(4): 327–340.

Rehman Au, Van Kerschaver EP, Aydin E, et al. Electrode metallization for scaled perovskite/silicon tandem solar cells: Challenges and opportunities. Progress in Photovoltaics: Research and Applications 2023; 31(4): 429–442.

Yan D, Cuevas A, Stuckelberger J, et al. Silicon solar cells with passivating contacts: Classification and performance. Progress in Photovoltaics: Research and Applications 2023; 31(4): 310–326.

Zhang X, Dumbrell R, Li W, et al. Mass production of crystalline silicon solar cells with polysilicon-based passivating contacts: An industrial perspective. Progress in Photovoltaics: Research and Applications 2023; 31(4): 369–379.

Du H, Wang T, Zeng Y, et al. Improved contact quality for silver-free silicon heterojunction solar cells by phosphoric acid treatment. Solar Energy 2023; 252:1–7.

Ganesan K, Winston DP, Sugumar S, et al. Performance analysis of n-type PERT bifacial solar PV module under diverse albedo conditions. Solar Energy 2023; 252: 81–90.

Ding D, Du Z, Liu R, et al. Laser doping selective emitter with thin borosilicate glass layer for n-type TOPCon c-Si solar cells. Solar Energy Materials and Solar Cells 2023; 253: 112230.

Jiang X, Wang H, Huang X, et al. Deterioration of silver alloy electrode caused by photocatalytic reaction for crystalline silicon solar cells. Solar Energy Materials and Solar Cells 2023; 253: 112249.

Madumelu C, Cai Y, Hollemann C, et al. Assessing the stability of p+ and n+ polysilicon passivating contacts with various capping layers on p-type wafers. Solar Energy Materials and Solar Cells 2023; 253: 112245.

Zhou XM, Lai HW, Huang T, et al. Suppressing nonradiative losses in wide-band-gap perovskites affords efficient and printable all-perovskite tandem solar cells with a metal-free charge recombination layer. Acs Energy Letters 2023; 8(1): 502–512.

Thiesbrummel J, Pena-Camargo F, Brinkmann KO, et al. Understanding and minimizing Voc losses in all-perovskite tandem photovoltaics. Advanced Energy Materials 2023; 13(3): 2202674.

Liu K, Miskevich AA, Loiko VA, et al. Interference effects induced by electrodes and their influences on the distribution of light field in perovskite absorber and current matching of perovskite/silicon tandem solar cell. Solar Energy 2023; 252: 252–259.

Liao YJ, Hsieh YC, Chen JT, et al. Large-area nonfullerene organic photovoltaic modules with a high certified power conversion efficiency. Acs Applied Materials and Interfaces 2023; 15(6): 7911–7918.

Zhao X, An Q, Zhang H, et al. Double asymmetric core optimizes crystal packing to enable selenophene-based acceptor with over 18% efficiency in binary organic solar cells. Angewandte Chemie - International Edition 2023; 62(10): e202216340.

Huang JZ, Yu HZ. The high-performance organic solar cells with an improved efficiency and stability by incorporating environmental biomaterial astaxanthin. Electrochimica Acta 2023; 439: 141684.

Sun R, Wang T, Fan Q, et al. 18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule 2023; 7(1): 221–237.

Bi PQ, An CB, Zhang T, et al. Achieving 31% efficiency in organic photovoltaic cells under indoor light using a low energetic disorder polymer donor. Journal of Materials Chemistry A 2023; 11(2): 983–991.

Heng W, Weihua L, Bachagha K. Recent progress in flexible electrodes and textile shaped devices for organic solar cells. Journal of Materials Chemistry A 2023; 11(3): 1039–1060.

Luke J, Jo YR, Lin CT, et al. The molecular origin of high performance in ternary organic photovoltaics identified using a combination of in situ structural probes. Journal of Materials Chemistry A 2023; 11(3): 1281–1289.

Shen Q, He CL, Li SX, et al. Mapping polymer donors with a non-fused acceptor possessing outward branched alkyl chains for efficient organic solar cells. Journal of Materials Chemistry A 2023; 11(7): 3575–3583.

Kim GH, Lee C, Kim K, et al. Novel structural feature-descriptor platform for machine learning to accelerate the development of organic photovoltaics. Nano Energy 2023; 106: 108108.

Xie CC, Xiao CY, Fang J, et al. Core/shell AgNWs@SnOx electrodes for high performance flexible indoor organic solar cells with >25% efficiency. Nano Energy 2023; 107: 108153.

Mahalingam S, Manap A, Rabeya R, et al. Electron transport of chemically treated graphene quantum dots-based dye-sensitized solar cells. Electrochimica Acta 2023; 439: 141667.

Bonomo M, Zarate AYS, Fagiolari L, et al. Unreported resistance in charge transport limits the photoconversion efficiency of aqueous dye-sensitised solar cells: An electrochemical impedance spectroscopy study. Materials Today Sustainability 2023; 21: 100271.

Zhao Q, Lai C, Zhang H, et al. A broad-spectrum solar energy power system by hybridizing stirling-like thermocapacitive cycles to dye-sensitized solar cells. Renewable Energy 2023; 205: 94–104.

Castro-Mendez AF, Wooding JP, Fairach S, et al. Vapor phase infiltration improves thermal stability of organic layers in perovskite solar cells. Acs Energy Letters 2023; 8(1): 844–852.

Yuan L, Sun X, Zhang XL, et al. Targeted design of surface configuration on CsPbI3 perovskite nanocrystals for high-efficiency photovoltaics. Acs Energy Letters 2023; 8(1): 241–249.

Chen ZY, Dhakal TP. Room temperature synthesis of lead-free FASnI3 perovskite nanocrystals with improved stability by SnF2 additive. Applied Physics Reviews 2023; 10(1): 011404.

Lee DK, Park NG. Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews 2023; 10(1): 011308.

Cheng N, Liu Z, Li WW, et al. Cu2ZnGeS4 as a novel hole transport material for carbon-based perovskite solar cells with power conversion efficiency above 18%. Chemical Engineering Journal 2023; 454:140146.

Lee JH, Kim D, Opoku H, et al. Ethylene glycol-containing ammonium salt for developing highly compatible interfaces in perovskite solar cells. Chemical Engineering Journal 2023; 455: 140833.

Sun JY, Jin YZ, Liu QJ, et al. Surface-modification-induced synergies of crystal growth and defect passivation toward CsPbI2Br solar cells with efficiency exceeding 17%. Chemical Engineering Journal 2023; 457: 141300.

Alharbi EA, Krishna A, Lempesis N, et al. Cooperative passivation of perovskite solar cells by alkyldimethylammonium halide amphiphiles. Joule 2023; 7(1): 183–200.

Holzhey P, Prettl M, Collavini S, et al. Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics. Joule 2023; 7(2): 257–271.

Wu Y, Xu G, Xi J, et al. In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 2023; 7(2): 398–415.

Yang ZQ, Niu YJ, Zhang XX, et al. Efficiency improvement of semi-transparent perovskite solar cells via crystallinity enhancement. Journal of Materials Chemistry A 2023; 11(6): 3070–3079.

Hanmandlu C, Paste R, Tsai H, et al. 3D nanographene precursor suppress interfacial recombination in PEDOT:PSS based perovskite solar cells. Nano Energy 2023; 107: 108136.

Zhang JD, Li C, Zhu MQ, et al. Stable and environmentally friendly perovskite solar cells induced by grain boundary engineering with self-assembled hydrogen-bonded porous frameworks. Nano Energy 2023; 108: 108217.

Yang T, Gao L, Lu J, et al. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nature Communications 2023; 14(1): 839.

Cao JL, Fang ZM, Liu SZ. Tailoring the Cs/Br ratio for efficient and stable wide-bandgap perovskite solar cells. Solar RRL 2023; 7(2): 2200955.

Ul Ain Q, Xia JX, Kanda H, et al. Transparent liquid crystal hole-transporting material for stable perovskite solar cells. Solar RRL 2023; 7(2): 2200920.

Yussuf ST, Nwambaekwe KC, Ramoroka ME, et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells. Materials Today Sustainability 2023; 21: 100287.

Ahmad Raza H, Ibne Mahmood F, TamizhMani G. Use of non-contact voltmeter to quantify potential induced degradation in CdTe modules. Solar Energy 2023; 252: 284–290.

Urbaniak A, Czudek A, Eslam A, et al. Consequences of grain boundary barriers on electrical characteristics of CIGS solar cells. Solar Energy Materials and Solar Cells 2023; 253: 112252.

Zhou Z, Pu Y, Liu W, et al. Assembly and synthesis mechanism of CdSe quantum dots in recombinant escherichia coli expressing metallothionein. Acs Sustainable Chemistry and Engineering 2023; 11(1): 113–121.

Bafti A, Mandic V, Panzic I, et al. CdSe QDs modified cellulose microfibrils for enhanced humidity sensing properties. Applied Surface Science 2023; 612: 155894.

Yang HS, Lee D, Suh EH, et al. Facile low-energy and open-air synthesis of mixed-cation perovskite quantum dots for high-performance solar cells. Chemical Engineering Journal 2023; 457: 141107.

Liu JW, Wang JJ, Liu Y, et al. Toward efficient hybrid solar cells comprising quantum dots and organic materials: Progress, strategies, and perspectives. Journal of Materials Chemistry A 2023; 11(3): 1013–1038.

Chen Q, Li XY, Zhang ZJ, et al. Remote sensing of photovoltaic scenarios: Techniques, applications and future directions. Applied Energy 2023; 333: 120579.

Raillani B, Salhi M, Chaatouf D, et al. A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height. Applied Energy 2023; 331: 120403.

He BH, Lu H, Zheng CX, et al. Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review. Energy 2023; 263: 126083.

Ragb O, Bakr H. A new technique for estimation of photovoltaic system and tracking power peaks of PV array under partial shading. Energy 2023; 268: 126680.

Peng DK, Fang ZL, Yu XF, et al. Characteristic analysis of patterned photovoltaic modules for building integration. Energy Conversion and Management 2023; 276: 116524.

Manna S, Singh DK, Akella AK, et al. Design and implementation of a new adaptive MPPT controller for solar PV systems. Energy Reports 2023; 9: 1818–1829.

Song H, Al Khafaf N, Kamoona A, et al. Multitasking recurrent neural network for photovoltaic power generation prediction. Energy Reports 2023; 9: 369–376.

Alcaide AM, Ko Y, Andresen M, et al. Capacitor lifetime extension of interleaved DC–DC converters for multistring PV systems. IEEE Transactions on Industrial Electronics 2023; 70(5): 4854–4864.

Bi Q, Zhou GH, Tian QX. Improved flexible power point tracking algorithm for PV system under fast-changing irradiance conditions. IEEE Transactions on Power Electronics 2023; 38(3): 4061–4071.

Li JJ, Zhang CH, Sun B. Two-stage hybrid deep learning with strong adaptability for detailed day-ahead photovoltaic power forecasting. IEEE Transactions on Sustainable Energy 2023; 14(1): 193–205.

Limouni T, Yaagoubi R, Bouziane K, et al. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renewable Energy 2023; 205: 1010–1024.

Chandra Mahato G, Ranjan Biswal S, Roy Choudhury T, et al. Review of active power control techniques considering the impact of MPPT and FPPT during high PV penetration. Solar Energy 2023; 251: 404–419.

Khalid HM, Rafique Z, Muyeen SM, et al. Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Solar Energy 2023; 251: 261–285.

Mahmood Fi, TamizhMani G. Impact of different backsheets and encapsulant types on potential induced degradation (PID) of silicon PV modules. Solar Energy 2023; 252: 20–28.

Mannino G, Tina GM, Cacciato M, et al. A photovoltaic degradation evaluation method applied to bifacial modules. Solar Energy 2023; 251: 39–50.

Oliveira AKVd, Bracht MK, Aghaei M, et al. Automatic fault detection of utility-scale photovoltaic solar generators applying aerial infrared thermography and orthomosaicking. Solar Energy 2023; 252: 272–283.

Ratnaparkhi A, Dave D, Valerino M, et al. Quantifying the accuracy of optical transmission loss techniques and identifying the best wavelengths for estimating soiling in a field study. Solar Energy 2023; 252: 391–400.

Divya A, Adish T, Kaustubh P, et al. Review on recycling of solar modules/panels. Solar Energy Materials and Solar Cells 2023; 253: 112151.

Amini Toosi H, Del Pero C, Leonforte F, et al. Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization. Applied Energy 2023; 334: 120648.

Castillejo-Cuberos A, Cardemil JM, Escobar R. Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage. Applied Energy 2023; 334: 120712.

Fathy A. Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles. Applied Energy 2023; 334: 120688.

Le TS, Nguyen TN, Bui DK, et al. Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage. Applied Energy 2023; 336: 120817.

May R, Huang P. A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets. Applied Energy 2023; 334: 120705.

Mayer MJ, Biró B, Szücs B, et al. Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning. Applied Energy 2023; 336: 120801.

Sommerfeldt N, Pearce JM. Can grid-tied solar photovoltaics lead to residential heating electrification? A techno-economic case study in the midwestern U.S. Applied Energy 2023; 336: 120838.

Bodong S, Wiseong J, Chengmeng L, et al. Economic management and planning based on a probabilistic model in a multi-energy market in the presence of renewable energy sources with a demand-side management program. Energy 2023; 269: 126549.

Bórawski P, Holden L, Bełdycka-Bórawska A. Perspectives of photovoltaic energy market development in the european union. Energy 2023; 270: 126804.

Guo XP, Dong YN, Ren DF. CO2 emission reduction effect of photovoltaic industry through 2060 in China. Energy 2023; 269: 126692.

Han JM, Lim S, Malkawi A, et al. Data-informed building energy management (DiBEM) towards ultra-low energy buildings. Energy and Buildings 2023; 281: 112761.

Li Y, Chen K, Ding R, et al. How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China. Energy Economics 2023; 118: 106514.

Hammerle M, White LV, Sturmberg B. Solar for renters: Investigating investor perspectives of barriers and policies. Energy Policy 2023; 174: 113417.

Tan Y, Ying XY, Gao WJ, et al. Applying an extended theory of planned behavior to predict willingness to pay for green and low-carbon energy transition. Journal of Cleaner Production 2023; 387: 135893.

Fox N. Increasing solar entitlement and decreasing energy vulnerability in a low-income community by adopting the prosuming project. Nature Energy 2023; 8(1): 74–83.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信