具有稳定内部结构演变的微米级SiMgyOx高性能锂离子电池阳极

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi-Fan Tian, Ge Li, Di-Xin Xu, Zhuo-Ya Lu, Ming-Yan Yan, Jing Wan, Jin-Yi Li, Quan Xu, Sen Xin, Rui Wen, Yu-Guo Guo
{"title":"具有稳定内部结构演变的微米级SiMgyOx高性能锂离子电池阳极","authors":"Yi-Fan Tian,&nbsp;Ge Li,&nbsp;Di-Xin Xu,&nbsp;Zhuo-Ya Lu,&nbsp;Ming-Yan Yan,&nbsp;Jing Wan,&nbsp;Jin-Yi Li,&nbsp;Quan Xu,&nbsp;Sen Xin,&nbsp;Rui Wen,&nbsp;Yu-Guo Guo","doi":"10.1002/adma.202200672","DOIUrl":null,"url":null,"abstract":"<p>In recent years, micrometer-sized Si-based anode materials have attracted intensive attention in the pursuit of energy-storage systems with high energy and low cost. However, the significant volume variation during repeated electrochemical (de)alloying processes will seriously damage the bulk structure of SiO<i><sub>x</sub></i> microparticles, resulting in rapid performance fade. This work proposes to address the challenge by preparing in situ magnesium-doped SiO<i><sub>x</sub></i> (SiMg<i><sub>y</sub></i>O<i><sub>x</sub></i>) microparticles with stable structural evolution against Li uptake/release. The homogeneous distribution of magnesium silicate in SiMg<i><sub>y</sub></i>O<i><sub>x</sub></i> contributes to building a bonding network inside the particle so that it raises the modulus of lithiated state and restrains the internal cracks due to electrochemical agglomeration of nano-Si. The prepared micrometer-sized SiMg<i><sub>y</sub></i>O<i><sub>x</sub></i> anode shows high reversible capacities, stable cycling performance, and low electrode expansion at high areal mass loading. A 21700 cylindrical-type cell based on the SiMg<i><sub>y</sub></i>O<i><sub>x</sub></i>-graphite anode and LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> cathode demonstrates a 1000-cycle operation life using industry-recognized electrochemical test procedures, which meets the practical storage requirements for consumer electronics and electric vehicles. This work provides insights on the reasonable structural design of micrometer-sized alloying anode materials toward realization of high-performance Li-ion batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"34 15","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Micrometer-Sized SiMgyOx with Stable Internal Structure Evolution for High-Performance Li-Ion Battery Anodes\",\"authors\":\"Yi-Fan Tian,&nbsp;Ge Li,&nbsp;Di-Xin Xu,&nbsp;Zhuo-Ya Lu,&nbsp;Ming-Yan Yan,&nbsp;Jing Wan,&nbsp;Jin-Yi Li,&nbsp;Quan Xu,&nbsp;Sen Xin,&nbsp;Rui Wen,&nbsp;Yu-Guo Guo\",\"doi\":\"10.1002/adma.202200672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, micrometer-sized Si-based anode materials have attracted intensive attention in the pursuit of energy-storage systems with high energy and low cost. However, the significant volume variation during repeated electrochemical (de)alloying processes will seriously damage the bulk structure of SiO<i><sub>x</sub></i> microparticles, resulting in rapid performance fade. This work proposes to address the challenge by preparing in situ magnesium-doped SiO<i><sub>x</sub></i> (SiMg<i><sub>y</sub></i>O<i><sub>x</sub></i>) microparticles with stable structural evolution against Li uptake/release. The homogeneous distribution of magnesium silicate in SiMg<i><sub>y</sub></i>O<i><sub>x</sub></i> contributes to building a bonding network inside the particle so that it raises the modulus of lithiated state and restrains the internal cracks due to electrochemical agglomeration of nano-Si. The prepared micrometer-sized SiMg<i><sub>y</sub></i>O<i><sub>x</sub></i> anode shows high reversible capacities, stable cycling performance, and low electrode expansion at high areal mass loading. A 21700 cylindrical-type cell based on the SiMg<i><sub>y</sub></i>O<i><sub>x</sub></i>-graphite anode and LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> cathode demonstrates a 1000-cycle operation life using industry-recognized electrochemical test procedures, which meets the practical storage requirements for consumer electronics and electric vehicles. This work provides insights on the reasonable structural design of micrometer-sized alloying anode materials toward realization of high-performance Li-ion batteries.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"34 15\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202200672\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202200672","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 55

摘要

近年来,在追求高能量、低成本储能系统的过程中,微米级硅基阳极材料引起了人们的广泛关注。然而,在重复的电化学(脱)合金化过程中,体积的显著变化会严重破坏SiOx微粒的体结构,导致性能快速衰减。这项工作提出通过制备具有稳定结构演化的原位掺镁SiOx (SiMgyOx)微粒来解决这一挑战。硅酸镁在SiMgyOx中的均匀分布有助于在颗粒内部建立键合网络,从而提高了锂化态模量,抑制了纳米硅电化学团聚引起的内部裂纹。制备的微米尺寸的SiMgyOx阳极具有高可逆容量、稳定的循环性能和在高面质量载荷下低电极膨胀的特点。基于simgyox -石墨阳极和LiNi0.8Co0.15Al0.05O2阴极的21700圆柱型电池通过行业公认的电化学测试程序验证了1000次运行寿命,满足消费电子产品和电动汽车的实际存储要求。本研究为实现高性能锂离子电池的微米级合金负极材料的合理结构设计提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Micrometer-Sized SiMgyOx with Stable Internal Structure Evolution for High-Performance Li-Ion Battery Anodes

Micrometer-Sized SiMgyOx with Stable Internal Structure Evolution for High-Performance Li-Ion Battery Anodes

In recent years, micrometer-sized Si-based anode materials have attracted intensive attention in the pursuit of energy-storage systems with high energy and low cost. However, the significant volume variation during repeated electrochemical (de)alloying processes will seriously damage the bulk structure of SiOx microparticles, resulting in rapid performance fade. This work proposes to address the challenge by preparing in situ magnesium-doped SiOx (SiMgyOx) microparticles with stable structural evolution against Li uptake/release. The homogeneous distribution of magnesium silicate in SiMgyOx contributes to building a bonding network inside the particle so that it raises the modulus of lithiated state and restrains the internal cracks due to electrochemical agglomeration of nano-Si. The prepared micrometer-sized SiMgyOx anode shows high reversible capacities, stable cycling performance, and low electrode expansion at high areal mass loading. A 21700 cylindrical-type cell based on the SiMgyOx-graphite anode and LiNi0.8Co0.15Al0.05O2 cathode demonstrates a 1000-cycle operation life using industry-recognized electrochemical test procedures, which meets the practical storage requirements for consumer electronics and electric vehicles. This work provides insights on the reasonable structural design of micrometer-sized alloying anode materials toward realization of high-performance Li-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信