{"title":"原子分辨率高角度环形暗场图像的图像对比度","authors":"S. Stemmer, J. Lebeau, S. Findlay, L. Allen","doi":"10.1107/S0108767308097924","DOIUrl":null,"url":null,"abstract":"Identification of individual C-C bonds is an ultimate goal of the carbon nanostructure characterization. We have been developping a high sensitivity transmission electron microscopy (TEM) which enables us to visualize a single C-C bond. A TEM equipped with an aberration corrector allows a higher spatial resolution without increasing its tension (the accelerating voltage). Then we have achieved the resolution of 0.14 nm, which corresponds to a typical C-C distance, at a moderate accelerating voltage (120kV). This merits a lot to realize the visualization of carbon atomic chain such as the alkyl chain without electron irradiation damage (1). Here we show some examples for atomic-level characterization of carbon nanostructures. The C60 fullerene molecule has been successfully identified its structure and orientation at a single-molecular basis (2). Also the active topological defects have been eventually caught redhanded (3). The technique can be widely applicable to visualize a biological activity, at an atomic level, for which any conformation change of the C-C bonds is responsible. The cis-/trans-isomerization of retinal molecules have been successfully visualized (4). (1) M. Koshino et al., Science 316 (2007) p853 (2) Z. Liu et al., J. Am. Chem. Soc., 129 (2007) pp.6666-6667 (3) K. Suenaga et al., Nature Nanotech. 2 (2007) pp.358-360 (4) Z. Liu et al., Nature Nanotech. 2 (2007) pp.422-425","PeriodicalId":78988,"journal":{"name":"Acta crystallographica. Section A, Crystal physics, diffraction, theoretical and general crystallography","volume":"64 1","pages":"65-65"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image contrast in atomic resolution high-angle annular dark-field images\",\"authors\":\"S. Stemmer, J. Lebeau, S. Findlay, L. Allen\",\"doi\":\"10.1107/S0108767308097924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of individual C-C bonds is an ultimate goal of the carbon nanostructure characterization. We have been developping a high sensitivity transmission electron microscopy (TEM) which enables us to visualize a single C-C bond. A TEM equipped with an aberration corrector allows a higher spatial resolution without increasing its tension (the accelerating voltage). Then we have achieved the resolution of 0.14 nm, which corresponds to a typical C-C distance, at a moderate accelerating voltage (120kV). This merits a lot to realize the visualization of carbon atomic chain such as the alkyl chain without electron irradiation damage (1). Here we show some examples for atomic-level characterization of carbon nanostructures. The C60 fullerene molecule has been successfully identified its structure and orientation at a single-molecular basis (2). Also the active topological defects have been eventually caught redhanded (3). The technique can be widely applicable to visualize a biological activity, at an atomic level, for which any conformation change of the C-C bonds is responsible. The cis-/trans-isomerization of retinal molecules have been successfully visualized (4). (1) M. Koshino et al., Science 316 (2007) p853 (2) Z. Liu et al., J. Am. Chem. Soc., 129 (2007) pp.6666-6667 (3) K. Suenaga et al., Nature Nanotech. 2 (2007) pp.358-360 (4) Z. Liu et al., Nature Nanotech. 2 (2007) pp.422-425\",\"PeriodicalId\":78988,\"journal\":{\"name\":\"Acta crystallographica. Section A, Crystal physics, diffraction, theoretical and general crystallography\",\"volume\":\"64 1\",\"pages\":\"65-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section A, Crystal physics, diffraction, theoretical and general crystallography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/S0108767308097924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section A, Crystal physics, diffraction, theoretical and general crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S0108767308097924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
单个碳碳键的鉴定是碳纳米结构表征的最终目标。我们一直在开发一种高灵敏度透射电子显微镜(TEM),使我们能够可视化单个C-C键。配备了像差校正器的瞬变电磁法可以在不增加其张力(加速电压)的情况下获得更高的空间分辨率。然后我们在中等加速电压(120kV)下实现了0.14 nm的分辨率,这对应于典型的C-C距离。这对于实现碳原子链(如烷基链)在没有电子辐照损伤的情况下的可视化有很大的价值(1)。这里我们展示了一些碳纳米结构的原子级表征的例子。C60富勒烯分子已经成功地在单分子基础上确定了其结构和取向(2)。此外,活性拓扑缺陷最终也被当场捕获(3)。该技术可以广泛应用于可视化生物活性,在原子水平上,任何C-C键的构象变化都是负责任的。(1) M. Koshino et al., Science (2007) p853(2)刘志强等,J. Am.。化学。Soc。(3) K. Suenaga et al., Nature Nanotech. 2 (2007) pp.358-360(4)刘正志等,Nature Nanotech. 2 (2007) pp.422-425
Image contrast in atomic resolution high-angle annular dark-field images
Identification of individual C-C bonds is an ultimate goal of the carbon nanostructure characterization. We have been developping a high sensitivity transmission electron microscopy (TEM) which enables us to visualize a single C-C bond. A TEM equipped with an aberration corrector allows a higher spatial resolution without increasing its tension (the accelerating voltage). Then we have achieved the resolution of 0.14 nm, which corresponds to a typical C-C distance, at a moderate accelerating voltage (120kV). This merits a lot to realize the visualization of carbon atomic chain such as the alkyl chain without electron irradiation damage (1). Here we show some examples for atomic-level characterization of carbon nanostructures. The C60 fullerene molecule has been successfully identified its structure and orientation at a single-molecular basis (2). Also the active topological defects have been eventually caught redhanded (3). The technique can be widely applicable to visualize a biological activity, at an atomic level, for which any conformation change of the C-C bonds is responsible. The cis-/trans-isomerization of retinal molecules have been successfully visualized (4). (1) M. Koshino et al., Science 316 (2007) p853 (2) Z. Liu et al., J. Am. Chem. Soc., 129 (2007) pp.6666-6667 (3) K. Suenaga et al., Nature Nanotech. 2 (2007) pp.358-360 (4) Z. Liu et al., Nature Nanotech. 2 (2007) pp.422-425