Linjing Ren, Kai Jensen, Philipp Porada, Peter Mueller
{"title":"生物群介导的碳循环-生物相互作用控制蓝碳的合成","authors":"Linjing Ren, Kai Jensen, Philipp Porada, Peter Mueller","doi":"10.1111/ele.13940","DOIUrl":null,"url":null,"abstract":"<p>Research into biotic interactions has been a core theme of ecology for over a century. However, despite the obvious role that biota play in the global carbon cycle, the effects of biotic interactions on carbon pools and fluxes are poorly understood. Here we develop a conceptual framework that illustrates the importance of biotic interactions in regulating carbon cycling based on a literature review and a quantitative synthesis by means of meta-analysis. Our study focuses on blue carbon ecosystems—vegetated coastal ecosystems that function as the most effective long-term CO<sub>2</sub> sinks of the biosphere. We demonstrate that a multitude of mutualistic, competitive and consumer–resource interactions between plants, animals and microbiota exert strong effects on carbon cycling across various spatial scales ranging from the rhizosphere to the landscape scale. Climate change-sensitive abiotic factors modulate the strength of biotic-interaction effects on carbon fluxes, suggesting that the importance of biota-mediated carbon cycling will change under future climatic conditions. Strong effects of biotic interactions on carbon cycling imply that biosphere-climate feedbacks may not be sufficiently represented in current Earth system models. Inclusion of new functional groups in these models, and new approaches to simplify species interactions, may thus improve the predictions of biotic effects on the global climate.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"25 2","pages":"521-540"},"PeriodicalIF":7.6000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.13940","citationCount":"17","resultStr":"{\"title\":\"Biota-mediated carbon cycling—A synthesis of biotic-interaction controls on blue carbon\",\"authors\":\"Linjing Ren, Kai Jensen, Philipp Porada, Peter Mueller\",\"doi\":\"10.1111/ele.13940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Research into biotic interactions has been a core theme of ecology for over a century. However, despite the obvious role that biota play in the global carbon cycle, the effects of biotic interactions on carbon pools and fluxes are poorly understood. Here we develop a conceptual framework that illustrates the importance of biotic interactions in regulating carbon cycling based on a literature review and a quantitative synthesis by means of meta-analysis. Our study focuses on blue carbon ecosystems—vegetated coastal ecosystems that function as the most effective long-term CO<sub>2</sub> sinks of the biosphere. We demonstrate that a multitude of mutualistic, competitive and consumer–resource interactions between plants, animals and microbiota exert strong effects on carbon cycling across various spatial scales ranging from the rhizosphere to the landscape scale. Climate change-sensitive abiotic factors modulate the strength of biotic-interaction effects on carbon fluxes, suggesting that the importance of biota-mediated carbon cycling will change under future climatic conditions. Strong effects of biotic interactions on carbon cycling imply that biosphere-climate feedbacks may not be sufficiently represented in current Earth system models. Inclusion of new functional groups in these models, and new approaches to simplify species interactions, may thus improve the predictions of biotic effects on the global climate.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"25 2\",\"pages\":\"521-540\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.13940\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.13940\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.13940","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Biota-mediated carbon cycling—A synthesis of biotic-interaction controls on blue carbon
Research into biotic interactions has been a core theme of ecology for over a century. However, despite the obvious role that biota play in the global carbon cycle, the effects of biotic interactions on carbon pools and fluxes are poorly understood. Here we develop a conceptual framework that illustrates the importance of biotic interactions in regulating carbon cycling based on a literature review and a quantitative synthesis by means of meta-analysis. Our study focuses on blue carbon ecosystems—vegetated coastal ecosystems that function as the most effective long-term CO2 sinks of the biosphere. We demonstrate that a multitude of mutualistic, competitive and consumer–resource interactions between plants, animals and microbiota exert strong effects on carbon cycling across various spatial scales ranging from the rhizosphere to the landscape scale. Climate change-sensitive abiotic factors modulate the strength of biotic-interaction effects on carbon fluxes, suggesting that the importance of biota-mediated carbon cycling will change under future climatic conditions. Strong effects of biotic interactions on carbon cycling imply that biosphere-climate feedbacks may not be sufficiently represented in current Earth system models. Inclusion of new functional groups in these models, and new approaches to simplify species interactions, may thus improve the predictions of biotic effects on the global climate.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.