染色质桥:随机断裂还是规定分辨率?

IF 13.6 2区 生物学 Q1 GENETICS & HEREDITY
Trends in Genetics Pub Date : 2024-01-01 Epub Date: 2023-10-25 DOI:10.1016/j.tig.2023.10.004
Huadong Jiang, Ying Wai Chan
{"title":"染色质桥:随机断裂还是规定分辨率?","authors":"Huadong Jiang, Ying Wai Chan","doi":"10.1016/j.tig.2023.10.004","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"69-82"},"PeriodicalIF":13.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatin bridges: stochastic breakage or regulated resolution?\",\"authors\":\"Huadong Jiang, Ying Wai Chan\",\"doi\":\"10.1016/j.tig.2023.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"69-82\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2023.10.004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2023.10.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

遗传物质以染色体的形式组织,需要在每个细胞周期中准确地分离为两个子细胞。然而,染色体融合或存在未解决的染色体间连接会导致染色质桥的形成,从而导致DNA损伤和基因组不稳定。持久的染色质桥被困在卵裂沟中,并在脱落时或脱落后断裂,脱落是胞质分裂的最后一步。在这篇综述中,我们重点介绍了在理解桥梁断裂机制和解决方法方面的最新进展。我们讨论了与桥DNA断裂和加工有关的分子机制和酶。此外,我们还概述了桥梁断裂引起的直接后果和基因组后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chromatin bridges: stochastic breakage or regulated resolution?

Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Genetics
Trends in Genetics 生物-遗传学
CiteScore
20.90
自引率
0.90%
发文量
160
审稿时长
6-12 weeks
期刊介绍: Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology. Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信