基于Rényi界优化和多源自适应的变分推理。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2023-10-20 DOI:10.3390/e25101468
Dana Zalman Oshri, Shai Fine
{"title":"基于Rényi界优化和多源自适应的变分推理。","authors":"Dana Zalman Oshri,&nbsp;Shai Fine","doi":"10.3390/e25101468","DOIUrl":null,"url":null,"abstract":"<p><p>Variational inference provides a way to approximate probability densities through optimization. It does so by optimizing an upper or a lower bound of the likelihood of the observed data (the evidence). The classic variational inference approach suggests maximizing the Evidence Lower Bound (ELBO). Recent studies proposed to optimize the variational Rényi bound (VR) and the χ upper bound. However, these estimates, which are based on the Monte Carlo (MC) approximation, either underestimate the bound or exhibit a high variance. In this work, we introduce a new upper bound, termed the Variational Rényi Log Upper bound (VRLU), which is based on the existing VR bound. In contrast to the existing VR bound, the MC approximation of the VRLU bound maintains the upper bound property. Furthermore, we devise a (sandwiched) upper-lower bound variational inference method, termed the Variational Rényi Sandwich (VRS), to jointly optimize the upper and lower bounds. We present a set of experiments, designed to evaluate the new VRLU bound and to compare the VRS method with the classic Variational Autoencoder (VAE) and the VR methods. Next, we apply the VRS approximation to the Multiple-Source Adaptation problem (MSA). MSA is a real-world scenario where data are collected from multiple sources that differ from one another by their probability distribution over the input space. The main aim is to combine fairly accurate predictive models from these sources and create an accurate model for new, mixed target domains. However, many domain adaptation methods assume prior knowledge of the data distribution in the source domains. In this work, we apply the suggested VRS density estimate to the Multiple-Source Adaptation problem (MSA) and show, both theoretically and empirically, that it provides tighter error bounds and improved performance, compared to leading MSA methods.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606691/pdf/","citationCount":"0","resultStr":"{\"title\":\"Variational Inference via Rényi Bound Optimization and Multiple-Source Adaptation.\",\"authors\":\"Dana Zalman Oshri,&nbsp;Shai Fine\",\"doi\":\"10.3390/e25101468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variational inference provides a way to approximate probability densities through optimization. It does so by optimizing an upper or a lower bound of the likelihood of the observed data (the evidence). The classic variational inference approach suggests maximizing the Evidence Lower Bound (ELBO). Recent studies proposed to optimize the variational Rényi bound (VR) and the χ upper bound. However, these estimates, which are based on the Monte Carlo (MC) approximation, either underestimate the bound or exhibit a high variance. In this work, we introduce a new upper bound, termed the Variational Rényi Log Upper bound (VRLU), which is based on the existing VR bound. In contrast to the existing VR bound, the MC approximation of the VRLU bound maintains the upper bound property. Furthermore, we devise a (sandwiched) upper-lower bound variational inference method, termed the Variational Rényi Sandwich (VRS), to jointly optimize the upper and lower bounds. We present a set of experiments, designed to evaluate the new VRLU bound and to compare the VRS method with the classic Variational Autoencoder (VAE) and the VR methods. Next, we apply the VRS approximation to the Multiple-Source Adaptation problem (MSA). MSA is a real-world scenario where data are collected from multiple sources that differ from one another by their probability distribution over the input space. The main aim is to combine fairly accurate predictive models from these sources and create an accurate model for new, mixed target domains. However, many domain adaptation methods assume prior knowledge of the data distribution in the source domains. In this work, we apply the suggested VRS density estimate to the Multiple-Source Adaptation problem (MSA) and show, both theoretically and empirically, that it provides tighter error bounds and improved performance, compared to leading MSA methods.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606691/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e25101468\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101468","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

变分推理提供了一种通过优化来近似概率密度的方法。它通过优化观测数据(证据)的可能性的上限或下限来做到这一点。经典的变分推理方法建议最大化证据下界(ELBO)。最近的研究提出优化变分Rényi界(VR)和χ上界。然而,这些基于蒙特卡罗(MC)近似的估计要么低估了界,要么表现出高方差。在这项工作中,我们引入了一个新的上界,称为变分Rényi对数上界(VRLU),它是基于现有的VR界。与现有的VR界相比,VRLU界的MC近似保持了上界性质。此外,我们设计了一种(夹层)上下界变分推理方法,称为变分Rényi三明治(VRS),以联合优化上下界。我们提出了一组实验,旨在评估新的VRLU界,并将VRS方法与经典的变分自动编码器(VAE)和VR方法进行比较。接下来,我们将VRS近似应用于多源自适应问题(MSA)。MSA是一种真实世界的场景,其中数据是从多个源收集的,这些源在输入空间上的概率分布彼此不同。主要目的是将这些来源的相当准确的预测模型结合起来,为新的混合目标领域创建一个准确的模型。然而,许多领域自适应方法都假定对源领域中的数据分布有先验知识。在这项工作中,我们将建议的VRS密度估计应用于多源自适应问题(MSA),并从理论和经验上表明,与领先的MSA方法相比,它提供了更严格的误差边界和改进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Variational Inference via Rényi Bound Optimization and Multiple-Source Adaptation.

Variational Inference via Rényi Bound Optimization and Multiple-Source Adaptation.

Variational Inference via Rényi Bound Optimization and Multiple-Source Adaptation.

Variational Inference via Rényi Bound Optimization and Multiple-Source Adaptation.

Variational inference provides a way to approximate probability densities through optimization. It does so by optimizing an upper or a lower bound of the likelihood of the observed data (the evidence). The classic variational inference approach suggests maximizing the Evidence Lower Bound (ELBO). Recent studies proposed to optimize the variational Rényi bound (VR) and the χ upper bound. However, these estimates, which are based on the Monte Carlo (MC) approximation, either underestimate the bound or exhibit a high variance. In this work, we introduce a new upper bound, termed the Variational Rényi Log Upper bound (VRLU), which is based on the existing VR bound. In contrast to the existing VR bound, the MC approximation of the VRLU bound maintains the upper bound property. Furthermore, we devise a (sandwiched) upper-lower bound variational inference method, termed the Variational Rényi Sandwich (VRS), to jointly optimize the upper and lower bounds. We present a set of experiments, designed to evaluate the new VRLU bound and to compare the VRS method with the classic Variational Autoencoder (VAE) and the VR methods. Next, we apply the VRS approximation to the Multiple-Source Adaptation problem (MSA). MSA is a real-world scenario where data are collected from multiple sources that differ from one another by their probability distribution over the input space. The main aim is to combine fairly accurate predictive models from these sources and create an accurate model for new, mixed target domains. However, many domain adaptation methods assume prior knowledge of the data distribution in the source domains. In this work, we apply the suggested VRS density estimate to the Multiple-Source Adaptation problem (MSA) and show, both theoretically and empirically, that it provides tighter error bounds and improved performance, compared to leading MSA methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信