{"title":"优化有限块长度嵌套线性保密代码:使用最差代码查找最佳代码。","authors":"Morteza Shoushtari, Willie Harrison","doi":"10.3390/e25101456","DOIUrl":null,"url":null,"abstract":"<p><p>Nested linear coding is a widely used technique in wireless communication systems for improving both security and reliability. Some parameters, such as the relative generalized Hamming weight and the relative dimension/length profile, can be used to characterize the performance of nested linear codes. In addition, the rank properties of generator and parity-check matrices can also precisely characterize their security performance. Despite this, finding optimal nested linear secrecy codes remains a challenge in the finite-blocklength regime, often requiring brute-force search methods. This paper investigates the properties of nested linear codes, introduces a new representation of the relative generalized Hamming weight, and proposes a novel method for finding the best nested linear secrecy code for the binary erasure wiretap channel by working from the worst nested linear secrecy code in the dual space. We demonstrate that our algorithm significantly outperforms the brute-force technique in terms of speed and efficiency.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Finite-Blocklength Nested Linear Secrecy Codes: Using the Worst Code to Find the Best Code.\",\"authors\":\"Morteza Shoushtari, Willie Harrison\",\"doi\":\"10.3390/e25101456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nested linear coding is a widely used technique in wireless communication systems for improving both security and reliability. Some parameters, such as the relative generalized Hamming weight and the relative dimension/length profile, can be used to characterize the performance of nested linear codes. In addition, the rank properties of generator and parity-check matrices can also precisely characterize their security performance. Despite this, finding optimal nested linear secrecy codes remains a challenge in the finite-blocklength regime, often requiring brute-force search methods. This paper investigates the properties of nested linear codes, introduces a new representation of the relative generalized Hamming weight, and proposes a novel method for finding the best nested linear secrecy code for the binary erasure wiretap channel by working from the worst nested linear secrecy code in the dual space. We demonstrate that our algorithm significantly outperforms the brute-force technique in terms of speed and efficiency.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e25101456\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101456","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing Finite-Blocklength Nested Linear Secrecy Codes: Using the Worst Code to Find the Best Code.
Nested linear coding is a widely used technique in wireless communication systems for improving both security and reliability. Some parameters, such as the relative generalized Hamming weight and the relative dimension/length profile, can be used to characterize the performance of nested linear codes. In addition, the rank properties of generator and parity-check matrices can also precisely characterize their security performance. Despite this, finding optimal nested linear secrecy codes remains a challenge in the finite-blocklength regime, often requiring brute-force search methods. This paper investigates the properties of nested linear codes, introduces a new representation of the relative generalized Hamming weight, and proposes a novel method for finding the best nested linear secrecy code for the binary erasure wiretap channel by working from the worst nested linear secrecy code in the dual space. We demonstrate that our algorithm significantly outperforms the brute-force technique in terms of speed and efficiency.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.