一种改进的基于二维离散小波变换和PCA的图像压缩算法。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2023-09-25 DOI:10.3390/e25101382
Rajiv Ranjan, Prabhat Kumar
{"title":"一种改进的基于二维离散小波变换和PCA的图像压缩算法。","authors":"Rajiv Ranjan,&nbsp;Prabhat Kumar","doi":"10.3390/e25101382","DOIUrl":null,"url":null,"abstract":"<p><p>Of late, image compression has become crucial due to the rising need for faster encoding and decoding. To achieve this objective, the present study proposes the use of canonical Huffman coding (CHC) as an entropy coder, which entails a lower decoding time compared to binary Huffman codes. For image compression, discrete wavelet transform (DWT) and CHC with principal component analysis (PCA) were combined. The lossy method was introduced by using PCA, followed by DWT and CHC to enhance compression efficiency. By using DWT and CHC instead of PCA alone, the reconstructed images have a better peak signal-to-noise ratio (PSNR). In this study, we also developed a hybrid compression model combining the advantages of DWT, CHC and PCA. With the increasing use of image data, better image compression techniques are necessary for the efficient use of storage space. The proposed technique achieved up to 60% compression while maintaining high visual quality. This method also outperformed the currently available techniques in terms of both PSNR (in dB) and bit-per-pixel (bpp) scores. This approach was tested on various color images, including Peppers 512 × 512 × 3 and Couple 256 × 256 × 3, showing improvements by 17 dB and 22 dB, respectively, while reducing the bpp by 0.56 and 0.10, respectively. For grayscale images as well, i.e., Lena 512 × 512 and Boat 256 × 256, the proposed method showed improvements by 5 dB and 8 dB, respectively, with a decrease of 0.02 bpp in both cases.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606267/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Improved Image Compression Algorithm Using 2D DWT and PCA with Canonical Huffman Encoding.\",\"authors\":\"Rajiv Ranjan,&nbsp;Prabhat Kumar\",\"doi\":\"10.3390/e25101382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Of late, image compression has become crucial due to the rising need for faster encoding and decoding. To achieve this objective, the present study proposes the use of canonical Huffman coding (CHC) as an entropy coder, which entails a lower decoding time compared to binary Huffman codes. For image compression, discrete wavelet transform (DWT) and CHC with principal component analysis (PCA) were combined. The lossy method was introduced by using PCA, followed by DWT and CHC to enhance compression efficiency. By using DWT and CHC instead of PCA alone, the reconstructed images have a better peak signal-to-noise ratio (PSNR). In this study, we also developed a hybrid compression model combining the advantages of DWT, CHC and PCA. With the increasing use of image data, better image compression techniques are necessary for the efficient use of storage space. The proposed technique achieved up to 60% compression while maintaining high visual quality. This method also outperformed the currently available techniques in terms of both PSNR (in dB) and bit-per-pixel (bpp) scores. This approach was tested on various color images, including Peppers 512 × 512 × 3 and Couple 256 × 256 × 3, showing improvements by 17 dB and 22 dB, respectively, while reducing the bpp by 0.56 and 0.10, respectively. For grayscale images as well, i.e., Lena 512 × 512 and Boat 256 × 256, the proposed method showed improvements by 5 dB and 8 dB, respectively, with a decrease of 0.02 bpp in both cases.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606267/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e25101382\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101382","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近,由于对更快的编码和解码的需求不断增加,图像压缩变得至关重要。为了实现这一目标,本研究提出使用规范霍夫曼编码(CHC)作为熵编码器,与二进制霍夫曼编码相比,这需要更低的解码时间。在图像压缩方面,将离散小波变换(DWT)和CHC与主成分分析(PCA)相结合。为了提高压缩效率,引入了PCA、DWT和CHC等有损方法。通过使用DWT和CHC代替单独的PCA,重建的图像具有更好的峰值信噪比(PSNR)。在本研究中,我们还结合DWT、CHC和PCA的优点开发了一个混合压缩模型。随着图像数据的使用越来越多,为了有效利用存储空间,需要更好的图像压缩技术。所提出的技术在保持高视觉质量的同时实现了高达60%的压缩。该方法在PSNR(以dB为单位)和每像素比特数(bpp)得分方面也优于当前可用的技术。该方法在各种彩色图像上进行了测试,包括Peppers 512×512×3和Couple 256×256×3,分别提高了17dB和22dB,同时将bpp分别降低了0.56和0.10。对于灰度图像,即Lena 512×512和Boat 256×256,所提出的方法分别提高了5 dB和8 dB,在这两种情况下都降低了0.02 bpp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Improved Image Compression Algorithm Using 2D DWT and PCA with Canonical Huffman Encoding.

An Improved Image Compression Algorithm Using 2D DWT and PCA with Canonical Huffman Encoding.

An Improved Image Compression Algorithm Using 2D DWT and PCA with Canonical Huffman Encoding.

An Improved Image Compression Algorithm Using 2D DWT and PCA with Canonical Huffman Encoding.

Of late, image compression has become crucial due to the rising need for faster encoding and decoding. To achieve this objective, the present study proposes the use of canonical Huffman coding (CHC) as an entropy coder, which entails a lower decoding time compared to binary Huffman codes. For image compression, discrete wavelet transform (DWT) and CHC with principal component analysis (PCA) were combined. The lossy method was introduced by using PCA, followed by DWT and CHC to enhance compression efficiency. By using DWT and CHC instead of PCA alone, the reconstructed images have a better peak signal-to-noise ratio (PSNR). In this study, we also developed a hybrid compression model combining the advantages of DWT, CHC and PCA. With the increasing use of image data, better image compression techniques are necessary for the efficient use of storage space. The proposed technique achieved up to 60% compression while maintaining high visual quality. This method also outperformed the currently available techniques in terms of both PSNR (in dB) and bit-per-pixel (bpp) scores. This approach was tested on various color images, including Peppers 512 × 512 × 3 and Couple 256 × 256 × 3, showing improvements by 17 dB and 22 dB, respectively, while reducing the bpp by 0.56 and 0.10, respectively. For grayscale images as well, i.e., Lena 512 × 512 and Boat 256 × 256, the proposed method showed improvements by 5 dB and 8 dB, respectively, with a decrease of 0.02 bpp in both cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信