水库诱发地震危险性评价的综合数值模型。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2023-09-26 DOI:10.3390/e25101383
Xuefeng Peng, Rong Zhao, Kai Deng
{"title":"水库诱发地震危险性评价的综合数值模型。","authors":"Xuefeng Peng,&nbsp;Rong Zhao,&nbsp;Kai Deng","doi":"10.3390/e25101383","DOIUrl":null,"url":null,"abstract":"<p><p>The assessment of seismic risk and the prevention of earthquake occurrences during reservoir operation present significant challenges in terms of accurate determination. This study aims to address this issue by developing a numerical model. The primary objective is to estimate the vulnerability of different fault types to reservoir impoundment. This model integrates essential parameters such as fault dip and the relative orientation between the reservoir and potential earthquakes, and it is structured within a risk framework using polar coordinates. Through comprehensive computations, we evaluate the alterations in elastic stress and fluid pore pressure resulting from water impoundment. This is achieved by employing a fully coupled two-dimensional poroelastic approach. Furthermore, our model incorporates relevant seismic data to enhance its accuracy. The findings of our study underscore that the critical factor lies in the fault's precise positioning with respect to the reservoir. The risk associated with a fault is contingent upon both its location and its orientation, emphasizing the importance of these factors in determining hazardous zones.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606261/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment.\",\"authors\":\"Xuefeng Peng,&nbsp;Rong Zhao,&nbsp;Kai Deng\",\"doi\":\"10.3390/e25101383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The assessment of seismic risk and the prevention of earthquake occurrences during reservoir operation present significant challenges in terms of accurate determination. This study aims to address this issue by developing a numerical model. The primary objective is to estimate the vulnerability of different fault types to reservoir impoundment. This model integrates essential parameters such as fault dip and the relative orientation between the reservoir and potential earthquakes, and it is structured within a risk framework using polar coordinates. Through comprehensive computations, we evaluate the alterations in elastic stress and fluid pore pressure resulting from water impoundment. This is achieved by employing a fully coupled two-dimensional poroelastic approach. Furthermore, our model incorporates relevant seismic data to enhance its accuracy. The findings of our study underscore that the critical factor lies in the fault's precise positioning with respect to the reservoir. The risk associated with a fault is contingent upon both its location and its orientation, emphasizing the importance of these factors in determining hazardous zones.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e25101383\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101383","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

地震风险评估和水库运行期间地震发生的预防在准确确定方面存在重大挑战。本研究旨在通过开发一个数值模型来解决这个问题。主要目的是估计不同断层类型对水库蓄水的脆弱性。该模型集成了断层倾角、储层与潜在地震之间的相对方位等基本参数,并使用极坐标在风险框架内构建。通过综合计算,我们评估了蓄水引起的弹性应力和流体孔隙压力的变化。这是通过采用完全耦合的二维孔隙弹性方法来实现的。此外,我们的模型结合了相关的地震数据,以提高其准确性。我们的研究结果强调,关键因素在于断层相对于储层的精确定位。与断层相关的风险取决于断层的位置和方向,强调了这些因素在确定危险区域中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment.

A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment.

A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment.

A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment.

The assessment of seismic risk and the prevention of earthquake occurrences during reservoir operation present significant challenges in terms of accurate determination. This study aims to address this issue by developing a numerical model. The primary objective is to estimate the vulnerability of different fault types to reservoir impoundment. This model integrates essential parameters such as fault dip and the relative orientation between the reservoir and potential earthquakes, and it is structured within a risk framework using polar coordinates. Through comprehensive computations, we evaluate the alterations in elastic stress and fluid pore pressure resulting from water impoundment. This is achieved by employing a fully coupled two-dimensional poroelastic approach. Furthermore, our model incorporates relevant seismic data to enhance its accuracy. The findings of our study underscore that the critical factor lies in the fault's precise positioning with respect to the reservoir. The risk associated with a fault is contingent upon both its location and its orientation, emphasizing the importance of these factors in determining hazardous zones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信