Ze Jiang, Zhe Ma, Zhongjin Ju, Dianzheng Wang, Yundou Xu
{"title":"变曲率金属外墙被动自适应爬壁机器人的设计与分析","authors":"Ze Jiang, Zhe Ma, Zhongjin Ju, Dianzheng Wang, Yundou Xu","doi":"10.1002/rob.22118","DOIUrl":null,"url":null,"abstract":"<p>To facilitate the safe adsorption and stable motion of robots on curved metal surfaces, a wall-climbing robot with a wheeled-type mobile mechanism that can passively self-adapt to walls with different curvature is proposed. The robot is composed of two relatively independent passive adaptive mobile mechanisms and overrunning permanent magnetic adsorption devices to achieve effective fitting of the driving wheels to the wall surface and adaptive surface motion. The overall design is based on a double-hinged connection scheme and gap-type permanent magnetic adsorption. The minimum adsorption force required for the robot to achieve stable climbing motion with no risk of slipping or capsizing is determined by developing a static analysis model. The effects of air-gap size and wall thickness on the adsorption force are analyzed by means of magnetic circuit design studies and parametric simulations on the permanent magnet adsorption device, as well as design optimization of the permanent magnet device. The motion performance test of the fabricated prototype shows that the robot can achieve adaptive curvature motion with self-attitude adjustment, and has a certain load capacity, obstacle crossing capability, and good surface adaptivity.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"40 1","pages":"94-109"},"PeriodicalIF":4.2000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and analysis of a wall-climbing robot for passive adaptive movement on variable-curvature metal facades\",\"authors\":\"Ze Jiang, Zhe Ma, Zhongjin Ju, Dianzheng Wang, Yundou Xu\",\"doi\":\"10.1002/rob.22118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To facilitate the safe adsorption and stable motion of robots on curved metal surfaces, a wall-climbing robot with a wheeled-type mobile mechanism that can passively self-adapt to walls with different curvature is proposed. The robot is composed of two relatively independent passive adaptive mobile mechanisms and overrunning permanent magnetic adsorption devices to achieve effective fitting of the driving wheels to the wall surface and adaptive surface motion. The overall design is based on a double-hinged connection scheme and gap-type permanent magnetic adsorption. The minimum adsorption force required for the robot to achieve stable climbing motion with no risk of slipping or capsizing is determined by developing a static analysis model. The effects of air-gap size and wall thickness on the adsorption force are analyzed by means of magnetic circuit design studies and parametric simulations on the permanent magnet adsorption device, as well as design optimization of the permanent magnet device. The motion performance test of the fabricated prototype shows that the robot can achieve adaptive curvature motion with self-attitude adjustment, and has a certain load capacity, obstacle crossing capability, and good surface adaptivity.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"40 1\",\"pages\":\"94-109\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22118\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22118","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Design and analysis of a wall-climbing robot for passive adaptive movement on variable-curvature metal facades
To facilitate the safe adsorption and stable motion of robots on curved metal surfaces, a wall-climbing robot with a wheeled-type mobile mechanism that can passively self-adapt to walls with different curvature is proposed. The robot is composed of two relatively independent passive adaptive mobile mechanisms and overrunning permanent magnetic adsorption devices to achieve effective fitting of the driving wheels to the wall surface and adaptive surface motion. The overall design is based on a double-hinged connection scheme and gap-type permanent magnetic adsorption. The minimum adsorption force required for the robot to achieve stable climbing motion with no risk of slipping or capsizing is determined by developing a static analysis model. The effects of air-gap size and wall thickness on the adsorption force are analyzed by means of magnetic circuit design studies and parametric simulations on the permanent magnet adsorption device, as well as design optimization of the permanent magnet device. The motion performance test of the fabricated prototype shows that the robot can achieve adaptive curvature motion with self-attitude adjustment, and has a certain load capacity, obstacle crossing capability, and good surface adaptivity.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.