Lei Song, Xiao Luo, Chialing Tsauo, Bing Shi, Renkai Liu, Chenghao Li
{"title":"新的脱细胞真皮基质移植兔模型口轮匝肌的组织学特征","authors":"Lei Song, Xiao Luo, Chialing Tsauo, Bing Shi, Renkai Liu, Chenghao Li","doi":"10.1002/term.3310","DOIUrl":null,"url":null,"abstract":"<p>Muscular dysplasia is the key factor in influencing surgical outcomes in patients with cleft lip/palate. In this research, we attempted to evaluate a new acellular dermal matrix (ADM) as a substitute for reconstruction of the orbicularis oris muscle with growth factors such as Insulin-Like Growth Factor I (IGF-I), vascular endothelial growth factor (VEGF) in a rabbit model. 30 male New Zealand Rabbits (2–3 m, 1700–2000 g) were divided into four groups as follows; a group in which the orbicularis oris muscle of the upper lip was implanted with ADM, a group in which the orbicularis oris muscle of the upper lip was implanted with ADM + IGF-I + VEGF, a group in which the upper lip was operated without implantation of an ADM scaffold, and a normal upper lip for comparison. Macroscopic observation, histological evaluation, and immunohistochemistry were employed to evaluate levels of the muscle regeneration, vascularization, and inflammation at 1, 2, 4, 6, and 12 weeks after the operation. All wounds healed well without infection, immune rejection and so on. Histological evaluation showed that ADM was totally degraded and replaced by connective tissue. The area in which the ADM scaffold was coated with growth factors show a significant increase in the formation of new myofibers after injury, and the vascularization improved compared to the control group and the normal group. In regard to the degrees of inflammation, there were no notable differences among the groups. In conclusion, Our study indicated that ADM grafts combined with IGF-I and VEGF have potential advantages in alleviating muscular dysplasia in cleft lip treatment.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 8","pages":"707-717"},"PeriodicalIF":3.1000,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histologic characterization of orbicularis oris muscle with a new acellular dermal matrix grafts in a rabbit model\",\"authors\":\"Lei Song, Xiao Luo, Chialing Tsauo, Bing Shi, Renkai Liu, Chenghao Li\",\"doi\":\"10.1002/term.3310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Muscular dysplasia is the key factor in influencing surgical outcomes in patients with cleft lip/palate. In this research, we attempted to evaluate a new acellular dermal matrix (ADM) as a substitute for reconstruction of the orbicularis oris muscle with growth factors such as Insulin-Like Growth Factor I (IGF-I), vascular endothelial growth factor (VEGF) in a rabbit model. 30 male New Zealand Rabbits (2–3 m, 1700–2000 g) were divided into four groups as follows; a group in which the orbicularis oris muscle of the upper lip was implanted with ADM, a group in which the orbicularis oris muscle of the upper lip was implanted with ADM + IGF-I + VEGF, a group in which the upper lip was operated without implantation of an ADM scaffold, and a normal upper lip for comparison. Macroscopic observation, histological evaluation, and immunohistochemistry were employed to evaluate levels of the muscle regeneration, vascularization, and inflammation at 1, 2, 4, 6, and 12 weeks after the operation. All wounds healed well without infection, immune rejection and so on. Histological evaluation showed that ADM was totally degraded and replaced by connective tissue. The area in which the ADM scaffold was coated with growth factors show a significant increase in the formation of new myofibers after injury, and the vascularization improved compared to the control group and the normal group. In regard to the degrees of inflammation, there were no notable differences among the groups. In conclusion, Our study indicated that ADM grafts combined with IGF-I and VEGF have potential advantages in alleviating muscular dysplasia in cleft lip treatment.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 8\",\"pages\":\"707-717\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3310\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3310","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Histologic characterization of orbicularis oris muscle with a new acellular dermal matrix grafts in a rabbit model
Muscular dysplasia is the key factor in influencing surgical outcomes in patients with cleft lip/palate. In this research, we attempted to evaluate a new acellular dermal matrix (ADM) as a substitute for reconstruction of the orbicularis oris muscle with growth factors such as Insulin-Like Growth Factor I (IGF-I), vascular endothelial growth factor (VEGF) in a rabbit model. 30 male New Zealand Rabbits (2–3 m, 1700–2000 g) were divided into four groups as follows; a group in which the orbicularis oris muscle of the upper lip was implanted with ADM, a group in which the orbicularis oris muscle of the upper lip was implanted with ADM + IGF-I + VEGF, a group in which the upper lip was operated without implantation of an ADM scaffold, and a normal upper lip for comparison. Macroscopic observation, histological evaluation, and immunohistochemistry were employed to evaluate levels of the muscle regeneration, vascularization, and inflammation at 1, 2, 4, 6, and 12 weeks after the operation. All wounds healed well without infection, immune rejection and so on. Histological evaluation showed that ADM was totally degraded and replaced by connective tissue. The area in which the ADM scaffold was coated with growth factors show a significant increase in the formation of new myofibers after injury, and the vascularization improved compared to the control group and the normal group. In regard to the degrees of inflammation, there were no notable differences among the groups. In conclusion, Our study indicated that ADM grafts combined with IGF-I and VEGF have potential advantages in alleviating muscular dysplasia in cleft lip treatment.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.