光伏文献综述(第184期)

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Ziv Hameiri
{"title":"光伏文献综述(第184期)","authors":"Ziv Hameiri","doi":"10.1002/pip.3722","DOIUrl":null,"url":null,"abstract":"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Gorjian S, Jamshidian FJ, Gorjian A, et al <b>Technological advancements and research prospects of innovative concentrating agrivoltaics.</b> <i>Applied Energy</i> 2023; <b>337</b>: 120799.</p><p>Pochont NR, Sekhar Y R. <b>Recent trends in photovoltaic technologies for sustainable transportation in passenger vehicles – A review.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>181</b>: 113317.</p><p>Peng ZX, Zhang YW, Sun XK, et al <b>Real-time probing and unraveling the morphology formation of blade-coated ternary nonfullerene organic photovoltaics with in situ x-ray scattering.</b> <i>Advanced Functional Materials</i> 2023; <b>33</b>(14): 2213248.</p><p>Xu G, Ke Z, Zhuang C, et al <b>Measurements and analysis of solar spectrum in near space.</b> <i>Energy Reports</i> 2023; <b>9</b>: 1764–1773.</p><p>Nawrocki WJ, Jones MR, Frese RN, et al <b>In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode performance.</b> <i>Joule</i> 2023; <b>7</b>(3): 529–544.</p><p>Le AHT, Srinivasa A, Bowden SG, et al <b>Temperature and illumination dependence of silicon heterojunction solar cells with a wide range of wafer resistivities.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 536–545.</p><p>Li B, Diallo D, Migan-Dubois A, et al <b>Performance evaluation of IEC 60891:2021 procedures for correcting I–V curves of photovoltaic modules under healthy and faulty conditions.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 474–493.</p><p>Bhavya Jyothi KN, Narasimhan KL, Arora BM, et al <b>Analysis and mitigation of errors in external quantum efficiency measurement of solar cells embedded in solar modules.</b> <i>Solar Energy</i> 2023; <b>258</b>: 319–324.</p><p>Li YJ, Li YX, Heger JE, et al <b>Revealing surface and interface evolution of molybdenum nitride as carrier-selective contacts for crystalline silicon solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(10): 13753–13760.</p><p>Hasumi M, Sameshima T, Mizuno T. <b>Passivation of cut edges of crystalline silicon by heat treatment in liquid water.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: SK1022.</p><p>Theeuwes RJ, Melskens J, Beyer W, et al <b>Hydrogenation of p</b><sup>+</sup> <b>poly-Si by Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>nanolayers prepared by atomic layer deposition.</b> <i>Journal of Applied Physics</i> 2023; <b>133</b>(14): 145301.</p><p>Hallam B, Kim M, Zhang Y, et al <b>The silver learning curve for photovoltaics and projected silver demand for net-zero emissions by 2050.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 598–606.</p><p>Heilig M, Wurmbrand D, Hahn G, et al <b>A simplified and masking-free doping process for interdigitated back contact solar cells using an atmospheric pressure chemical vapor deposition borosilicate glass/phosphosilicate glass layer stack for laser doping followed by a high temperature step.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 607–616.</p><p>Park H, Kim J, Choi D, et al <b>Boron-doped polysilicon using spin-on doping for high-efficiency both-side passivating contact silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 461–473.</p><p>Tang T, Yu C, Peng C-W, et al <b>Achievement of 25.54% power conversion efficiency by optimization of current losses at the front side of silicon heterojunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 449–460.</p><p>Tepner S, Lorenz A. <b>Printing technologies for silicon solar cell metallization: A comprehensive review.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 557–590.</p><p>Guo C, Jia R, Li X, et al <b>Influence of backside surface morphology on passivation and contact characteristics of TOPCON solar cells.</b> <i>Solar Energy</i> 2023; <b>258</b>: 278–288.</p><p>Canar HH, Bektaş G, Turan R. <b>On the passivation performance of SiN</b><sub><b>x</b></sub><b>, SiO</b><sub><b>x</b></sub><b>N</b><sub><b>y</b></sub> <b>and their stack on c-Si wafers for solar cell applications: Correlation with optical, chemical and interface properties.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>256</b>: 112356.</p><p>Liu Z, Lin H, Wu T, et al <b>Tailoring protective metals for high-efficient and stable dopant-free crystalline silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>256</b>: 112343.</p><p>Michel JI, Yan D, Phang SP, et al <b>Poly-Si passivating contacts prepared via phosphorus spin-on-doping: A comparison between different silicon deposition methods.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>255</b>: 112290.</p><p>Padhamnath P, Choi W-J, De Luna G, et al <b>Design, development and analysis of large-area industrial silicon solar cells featuring a full area polysilicon based passivating contact on the rear and selective passivating contacts on the front.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>256</b>: 112351.</p><p>Sio HC, Stuckelberger J, Basnet R, et al <b>Improving doped polycrystalline silicon passivating contacts with magnesium fluoride.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>254</b>: 112251.</p><p>Wu SF, Liu M, Jen AKY. <b>Prospects and challenges for perovskite-organic tandem solar cells.</b> <i>Joule</i> 2023; <b>7</b>(3): 484–502.</p><p>Phong Pham D, Han S, Phuong Nguyen M, et al <b>Potential structure of c-Si bottom sub-cell in bifacial four-terminal III-V/c-Si multijunction devices.</b> <i>Solar Energy</i> 2023; <b>257</b>: 10–17.</p><p>Kabaklı ÖŞ, Kox J, Tutsch L, et al <b>Minimizing electro-optical losses of ITO layers for monolithic perovskite silicon tandem solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>254</b>: 112246.</p><p>Patil H, Kim H, Kadam KD, et al <b>Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(10): 13238–13,248.</p><p>Ma LJ, Cui Y, Zhang JQ, et al <b>High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology.</b> <i>Advanced Materials</i> 2023; <b>35</b>(9): 2208926.</p><p>Lv J, Yang QG, Deng WY, et al <b>Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination.</b> <i>Chemical Engineering Journal</i> 2023; <b>465</b>: 142822.</p><p>Burlingame QC, Liu X, Ball ML, et al <b>Voltage-dependent excitation dynamics in UV-absorbing organic photovoltaics with efficient charge transfer exciton emission.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(4): 1742–1751.</p><p>Li SX, He CL, Chen TY, et al <b>Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2262–2,273.</p><p>Zhao XB, Sun R, Wu XH, et al <b>High-speed printing of a bulk-heterojunction architecture in organic solar cells films.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(4): 1711–1720.</p><p>Wang W, Cui Y, Zhang T, et al <b>High-performance organic photovoltaic cells under indoor lighting enabled by suppressing energetic disorders.</b> <i>Joule</i> 2023; <b>7</b>(5): 1067–1,079.</p><p>Yang Y, Wang JW, Zu YF, et al <b>Robust and hydrophobic interlayer material for efficient and highly stable organic solar cells.</b> <i>Joule</i> 2023; <b>7</b>(3): 545–557.</p><p>Kim TH, Park NW, Saeed MA, et al <b>Record indoor performance of organic photovoltaics with long-term stability enabled by self-assembled monolayer-based interface management.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108429.</p><p>Liu M, Ge X, Jiang X, et al <b>18% efficiency of ternary organic solar cells enabled by integrating a fused perylene diimide guest acceptor.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108501.</p><p>Fu JH, Fong PWK, Liu H, et al <b>19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1760.</p><p>Fu Y, Lee TH, Chin YC, et al <b>Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1870.</p><p>Jia ZR, Ma Q, Chen Z, et al <b>Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1236.</p><p>Li YX, Huang B, Zhang XN, et al <b>Lifetime over 10,000 hours for organic solar cells with Ir/IrO</b><sub><b>x</b></sub> <b>electron-transporting layer.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1241.</p><p>Wu X, Gao C, Chen Q, et al <b>High-performance vertical field-effect organic photovoltaics.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1579.</p><p>Venkatesan S, Chiang CY, Teng HS, et al <b>Monolithic quasi-solid-state dye sensitized solar cells prepared entirely by printing processes.</b> <i>Acs Sustainable Chemistry and Engineering</i> 2023; <b>11</b>(13): 5293–5,302.</p><p>Awai F, Sasaki M, Kinoshita T, et al <b>Energy-storable dye-sensitized solar cells with improved charge/discharge performance.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>(4): 044001.</p><p>Richhariya G, Kumar A, Shukla AK, et al <b>Efficient photosensitive light harvesting dye sensitized solar cell using hibiscus and rhodamine dyes.</b> <i>Journal of Power Sources</i> 2023; <b>572</b>: 233112.</p><p>Venkatesan S, My NHT, Teng HS, et al <b>Thin films of solid-state polymer electrolytes for dye-sensitized solar cells.</b> <i>Journal of Power Sources</i> 2023; <b>564</b>: 232896.</p><p>Zhou H, Kim HK. <b>Effective redox shuttles for polymer gel electrolytes-based quasi-solid-state dye-sensitized solar cells in outdoor and indoor applications: Comprehensive comparison and guidelines.</b> <i>Materials Today Energy</i> 2023; <b>34</b>: 101299.</p><p>Chen X, Huang Y, Chen Z. <b>Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell.</b> <i>Solar Energy</i> 2023; <b>258</b>: 351–360.</p><p>Ji XF, Zhou T, Fu Q, et al <b>Dopant-free two-dimensional hole transport small molecules enable efficient perovskite solar cells.</b> <i>Advanced Energy Materials</i> 2023; <b>13</b>(11): 2203756.</p><p>Chen CH, Wang ZK, Liao LS. <b>Perspective on perovskite indoor photovoltaics.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(13): 130501.</p><p>Huang J, Wang H, Chen C, et al <b>Adjustable skeleton of bilateral Lewis base passivator for CsPbI</b><sub><b>3</b></sub> <b>perovskite solar cells with PCE over 20% and superior stability.</b> <i>Chemical Engineering Journal</i> 2023; <b>466</b>: 143120.</p><p>Wang AL, Zuo CT, Niu XB, et al <b>Recent promise of lead-free halide perovskites in optoelectronic applications.</b> <i>Chemical Engineering Journal</i> 2023; <b>451</b>: 138926.</p><p>Xing YJ, Deng ZQ, Guo TH, et al <b>Managing iodine and tin based defects for efficient and stable mixed Sn-Pb perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>462</b>: 142122.</p><p>Gao Y, Ren FM, Sun DR, et al <b>Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2295–2,303.</p><p>Kim Y, Kim G, Park EY, et al <b>Alkylammonium bis (trifluoromethylsulfonyl)imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2226–2,238.</p><p>Ritzer DB, Nejand BA, Ruiz-Preciado MA, et al <b>Translucent perovskite photovoltaics for building integration.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2212–2,225.</p><p>Yang TH, Ma C, Cai WL, et al <b>Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells.</b> <i>Joule</i> 2023; <b>7</b>(3): 574–586.</p><p>Lan YJ, Wang YD, Lan ZR, et al <b>Thermally stable inverted perovskite solar cells using an electropolymerized Zn-porphyrin film as a dopant-free hole-transporting layer.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(13): 7085–7093.</p><p>Wang Y, Han MDX, Wang RB, et al <b>Buried interface passivation strategies for high-performance perovskite solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(16): 8573–8598.</p><p>Xie Z, Do Y, Choi SJ, et al <b>Perovskite solar cells approaching 25% PCE using side chain terminated hole transport materials with low concentration in a non-halogenated solvent process.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(17): 9608–9615.</p><p>Fan YP, Chen HR, Liu XM, et al <b>Myth behind metastable and stable n-hexylammonium bromide-based low-dimensional perovskites.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(14): 8209–8217.</p><p>Lou YJ, Zhang SS, Gu ZK, et al <b>Perovskite single crystals: Dimensional control, optoelectronic properties, and applications.</b> <i>Materials Today</i> 2023; <b>62</b>: 225–250.</p><p>Ma Y, Song QZ, Yang XY, et al <b>De-doping buried interface in p-i-n perovskite solar cells by utilizing compositional heterogeneity in depth.</b> <i>Nano Energy</i> 2023; <b>108</b>: 108250.</p><p>Seok HJ, Park JM, Jeong J, et al <b>Plasma damage-free deposition of transparent Sn-doped In</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>top cathode using isolated plasma soft deposition for perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>111</b>: 108431.</p><p>Wang HX, Zhang W, Wang BY, et al <b>Modulating buried interface with multi-fluorine containing organic molecule toward efficient NiO</b><sub><b>x</b></sub><b>-based inverted perovskite solar cell.</b> <i>Nano Energy</i> 2023; <b>111</b>: 108363.</p><p>Zou Y, Eichhorn J, Rieger S, et al <b>Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108449.</p><p>Kim T, Park S, Iyer V, et al <b>Mapping the pathways of photo-induced ion migration in organic–inorganic hybrid halide perovskites.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1846.</p><p>Ma CQ, Eickemeyer FT, Lee SH, et al <b>Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells.</b> <i>Science</i> 2023; <b>379</b>(6628): 173–178.</p><p>You S, Zeng HP, Liu YH, et al <b>Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules.</b> <i>Science</i> 2023; <b>379</b>(6629): 288–294.</p><p>Wu T, Hu JG, Chen S, et al <b>Energy band alignment by solution-processed aluminum doping strategy toward record efficiency in pulsed laser-deposited kesterite thin-film solar cell.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(11): 14291–14,303.</p><p>Xue JY, Yang XK, Bao XQ, et al <b>Improved carrier lifetimes of CdSe thin film via Te doping for photovoltaic application.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(14): 17858–17,866.</p><p>Shimamune Y, Tamaki H, Jimbo K. <b>Effect of post laser annealing on stacked structure of CZTS thin film solar cells.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: SK1020.</p><p>Tao SY, Dong LZ, Han JS, et al <b>Efficiency enhancement of CZTSe solar cells based on in situ K-doped precursor.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(16): 9085–9,096.</p><p>Yilmaz P, de Wild J, Aninat R, et al <b>In-depth analysis of potential-induced degradation in a commercial CIGS PV module.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 627–636.</p><p>Patel AK, Mishra R, Soni SK. <b>Electrical and optical parameters optimization and interface engineering for efficiency improvement of double CIGS absorber based solar cell.</b> <i>Solar Energy</i> 2023; <b>257</b>: 125–136.</p><p>Scarpulla MA, McCandless B, Phillips AB, et al <b>CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>255</b>: 112289.</p><p>Trifiletti V, Frioni L, Tseberlidis G, et al <b>Manganese-substituted kesterite thin-films for earth-abundant photovoltaic applications.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>254</b>: 112247.</p><p>Wang DD, Li YS, Yang YG, et al <b>How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation.</b> <i>Applied Energy</i> 2023; <b>341</b>: 121124.</p><p>Li XF, Wang YL, Jia YW, et al <b>Polyethylenimine-based bifunctional interfacial layer for efficient quantum dot photovoltaics.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(12): 123904.</p><p>Du DX, Wang LN, Ding D, et al <b>One-step synthesis of aqueous CdTe/CdSe composite QDs toward efficiency enhancement of solar cell.</b> <i>Chemical Engineering Journal</i> 2023; <b>461</b>: 142040.</p><p>Pandi DV, Saraswathi V, Venkatraman MR, et al <b>PbS quantum dots-sensitized ZnO nanorods-based third generation solar cells.</b> <i>Materials Today Chemistry</i> 2023; <b>29</b>: 101444.</p><p>Yuan JB, Yang XY, Zheng D, et al <b>Perovskite quantum dot-based tandem triboelectric-solar cell for boosting the efficiency and rain energy harvesting.</b> <i>Nano Energy</i> 2023; <b>110</b>: 10834.</p><p>Hou B, Mocanu FC, Cho Y, et al <b>Evolution of local structural motifs in colloidal quantum dot semiconductor nanocrystals leading to nanofaceting.</b> <i>Nano Letters</i> 2023; <b>23</b>(6): 2277–2286.</p><p>Jin BB, Liu XJ, Dong LC, et al <b>Improving loading of CdS/CdSe co-sensitized quantum dots to enhance the performance of solar cells by voltage-assisted SILAR deposition.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>255</b>: 112293.</p><p>Chen X, Ding K, Yang H, et al <b>Research on real-time identification method of model parameters for the photovoltaic array.</b> <i>Applied Energy</i> 2023; <b>342</b>: 121157.</p><p>Ding L, Zhu Y, Zheng L, et al <b>What is the path of photovoltaic building (BIPV or BAPV) promotion? The perspective of evolutionary games.</b> <i>Applied Energy</i> 2023; <b>340</b>: 121033.</p><p>Khan ZA, Hussain T, Baik SW. <b>Dual stream network with attention mechanism for photovoltaic power forecasting.</b> <i>Applied Energy</i> 2023; <b>338</b>: 120916.</p><p>Lee S, Lee JH, Jeong Y, et al <b>Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment.</b> <i>Applied Energy</i> 2023; <b>341</b>: 121130.</p><p>Olczak P. <b>Evaluation of degradation energy productivity of photovoltaic installations in long-term case study.</b> <i>Applied Energy</i> 2023; <b>343</b>: 121109.</p><p>Pirayawaraporn A, Sappaniran S, Nooraksa S, et al <b>Innovative sensorless dual-axis solar tracking system using particle filter.</b> <i>Applied Energy</i> 2023; <b>338</b>: 120946.</p><p>Polasek T, Cadik M. <b>Predicting photovoltaic power production using high-uncertainty weather forecasts.</b> <i>Applied Energy</i> 2023; <b>339</b>: 120989.</p><p>Scott C, Ahsan M, Albarbar A. <b>Machine learning for forecasting a photovoltaic (PV) generation system.</b> <i>Energy</i> 2023; <b>278</b>: 127807.</p><p>Raina G, Sinha S. <b>Experimental investigations of front and rear side soiling on bifacial PV module under different installations and environmental conditions.</b> <i>Energy for Sustainable Development</i> 2023; <b>72</b>: 301–313.</p><p>Hajji M, Yahyaoui Z, Mansouri M, et al <b>Fault detection and diagnosis in grid-connected PV systems under irradiance variations.</b> <i>Energy Reports</i> 2023; <b>9</b>: 4005–4017.</p><p>Liu X, Huang C, Wang L, et al <b>Improved super-resolution perception convolutional neural network for photovoltaics missing data recovery.</b> <i>Energy Reports</i> 2023; <b>9</b>: 388–395.</p><p>Schallenberg-Rodriguez J, Rodrigo-Bello JJ, Río-Gamero BD. <b>Agrivoltaic: How much electricity could photovoltaic greenhouses supply?</b> <i>Energy Reports</i> 2023; <b>9</b>: 5420–5,431.</p><p>Soler-Castillo Y, Sahni M, Leon-Castro E. <b>Performance predictability of photovoltaic systems: An approach to simulate the I-V curve dynamics.</b> <i>Energy Reports</i> 2023; <b>9</b>: 234–269.</p><p>Zhang Z, Wang J, Wei D, et al <b>An improved temporal convolutional network with attention mechanism for photovoltaic generation forecasting.</b> <i>Engineering Applications of Artificial Intelligence</i> 2023; <b>123</b>: 106273.</p><p>Chen TF, Gu L, Dally WJ, et al <b>A novel high-efficiency three-phase multilevel PV inverter with reduced DC-link capacitance.</b> <i>IEEE Transactions on Industrial Electronics</i> 2023; <b>70</b>(5): 4751–4,761.</p><p>Pascual J, García M, Marcos J, et al <b>Analysis of polyamide and fluoropolymer backsheets: Degradation and insulation failure in field-aged photovoltaic modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 494–505.</p><p>Springer M, Jordan DC, Barnes TM. <b>Future-proofing photovoltaics module reliability through a unifying predictive modeling framework.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 546–553.</p><p>Barbón A, Carreira-Fontao V, Bayón L, et al <b>Optimal design and cost analysis of single-axis tracking photovoltaic power plants.</b> <i>Renewable Energy</i> 2023; <b>211</b>: 626–646.</p><p>Di Giuseppe A, Cardinali M, Castellani B, et al <b>The impact of outdoor aging and soiling on the optic features of glass beads retro-reflective coatings.</b> <i>Solar Energy</i> 2023; <b>258</b>: 28–36.</p><p>Boiarkin V, Rajarajan M, Al-Zaili J, et al <b>A novel dynamic pricing model for a microgrid of prosumers with photovoltaic systems.</b> <i>Applied Energy</i> 2023; <b>342</b>: 121148.</p><p>Brown MA, Kale S, Kyeong-Cha M, et al <b>Exploring the willingness of consumers to electrify their homes.</b> <i>Applied Energy</i> 2023; <b>338</b>: 120791.</p><p>Song Z, Cao SL, Yang HX. <b>Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches.</b> <i>Applied Energy</i> 2023; <b>339</b>: 121005.</p><p>Agdas D, Barooah P. <b>On the economics of rooftop solar PV adoption.</b> <i>Energy Policy</i> 2023; <b>178</b>: 113611.</p><p>Lemay AC, Wagner S, Rand BP. <b>Current status and future potential of rooftop solar adoption in the United States.</b> <i>Energy Policy</i> 2023; <b>177</b>: 113571.</p><p>Ben Slama S, Mahmoud M. <b>A deep learning model for intelligent home energy management system using renewable energy.</b> <i>Engineering Applications of Artificial Intelligence</i> 2023; <b>123</b>: 106388.</p><p>Yeligeti M, Hu W, Scholz Y, et al <b>Cropland and rooftops: The global undertapped potential for solar photovoltaics.</b> <i>Environmental Research Letters</i> 2023; <b>18</b>(5): 054027.</p><p>Jia QA, Li YY, Yan Z, et al <b>Reactive power market design for distribution networks with high photovoltaic penetration.</b> <i>IEEE Transactions on Smart Grid</i> 2023; <b>14</b>(2): 1642–1,651.</p><p>Oteng D, Zuo J, Sharifi E. <b>An evaluation of the impact framework for product stewardship on end-of-life solar photovoltaic modules: An environmental lifecycle assessment.</b> <i>Journal of Cleaner Production</i> 2023; <b>411</b>: 137357.</p><p>Rossi F, Zuffi C, Parisi ML, et al <b>Comparative scenario-based LCA of renewable energy technologies focused on the end-of-life evaluation.</b> <i>Journal of Cleaner Production</i> 2023; <b>405</b>: 136931.</p><p>Zhao S, Yu L, Zhang Z. <b>Photovoltaic supply chain and government subsidy decision-making based on China's industrial distributed photovoltaic policy: A power perspective.</b> <i>Journal of Cleaner Production</i> 2023; <b>413</b>: 137438.</p><p>Zhang Z, Chen M, Zhong T, et al <b>Carbon mitigation potential afforded by rooftop photovoltaic in China.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2347.</p><p>Mao H, Chen X, Luo Y, et al <b>Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>179</b>: 113276.</p><p>He J, Iqbal W, Su F. <b>Nexus between renewable energy investment, green finance, and sustainable development: Role of industrial structure and technical innovations.</b> <i>Renewable Energy</i> 2023; <b>210</b>: 715–724.</p><p>Sun G, Li G, Dilanchiev A, et al <b>Promotion of green financing: Role of renewable energy and energy transition in China.</b> <i>Renewable Energy</i> 2023; <b>210</b>: 769–775.</p><p>Polverini D, Espinosa N, Eynard U, et al <b>Assessing the carbon footprint of photovoltaic modules through the EU Ecodesign Directive.</b> <i>Solar Energy</i> 2023; <b>257</b>: 1–9.</p><p>Rao RR, Priyadarshani S, Mani M. <b>Examining the use of end-of-life (EoL) PV panels in housing and sustainability.</b> <i>Solar Energy</i> 2023; <b>257</b>: 210–220.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 8","pages":"870-874"},"PeriodicalIF":8.0000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3722","citationCount":"0","resultStr":"{\"title\":\"PHOTOVOLTAICS LITERATURE SURVEY (No. 184)\",\"authors\":\"Ziv Hameiri\",\"doi\":\"10.1002/pip.3722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Gorjian S, Jamshidian FJ, Gorjian A, et al <b>Technological advancements and research prospects of innovative concentrating agrivoltaics.</b> <i>Applied Energy</i> 2023; <b>337</b>: 120799.</p><p>Pochont NR, Sekhar Y R. <b>Recent trends in photovoltaic technologies for sustainable transportation in passenger vehicles – A review.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>181</b>: 113317.</p><p>Peng ZX, Zhang YW, Sun XK, et al <b>Real-time probing and unraveling the morphology formation of blade-coated ternary nonfullerene organic photovoltaics with in situ x-ray scattering.</b> <i>Advanced Functional Materials</i> 2023; <b>33</b>(14): 2213248.</p><p>Xu G, Ke Z, Zhuang C, et al <b>Measurements and analysis of solar spectrum in near space.</b> <i>Energy Reports</i> 2023; <b>9</b>: 1764–1773.</p><p>Nawrocki WJ, Jones MR, Frese RN, et al <b>In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode performance.</b> <i>Joule</i> 2023; <b>7</b>(3): 529–544.</p><p>Le AHT, Srinivasa A, Bowden SG, et al <b>Temperature and illumination dependence of silicon heterojunction solar cells with a wide range of wafer resistivities.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 536–545.</p><p>Li B, Diallo D, Migan-Dubois A, et al <b>Performance evaluation of IEC 60891:2021 procedures for correcting I–V curves of photovoltaic modules under healthy and faulty conditions.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 474–493.</p><p>Bhavya Jyothi KN, Narasimhan KL, Arora BM, et al <b>Analysis and mitigation of errors in external quantum efficiency measurement of solar cells embedded in solar modules.</b> <i>Solar Energy</i> 2023; <b>258</b>: 319–324.</p><p>Li YJ, Li YX, Heger JE, et al <b>Revealing surface and interface evolution of molybdenum nitride as carrier-selective contacts for crystalline silicon solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(10): 13753–13760.</p><p>Hasumi M, Sameshima T, Mizuno T. <b>Passivation of cut edges of crystalline silicon by heat treatment in liquid water.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: SK1022.</p><p>Theeuwes RJ, Melskens J, Beyer W, et al <b>Hydrogenation of p</b><sup>+</sup> <b>poly-Si by Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>nanolayers prepared by atomic layer deposition.</b> <i>Journal of Applied Physics</i> 2023; <b>133</b>(14): 145301.</p><p>Hallam B, Kim M, Zhang Y, et al <b>The silver learning curve for photovoltaics and projected silver demand for net-zero emissions by 2050.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 598–606.</p><p>Heilig M, Wurmbrand D, Hahn G, et al <b>A simplified and masking-free doping process for interdigitated back contact solar cells using an atmospheric pressure chemical vapor deposition borosilicate glass/phosphosilicate glass layer stack for laser doping followed by a high temperature step.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 607–616.</p><p>Park H, Kim J, Choi D, et al <b>Boron-doped polysilicon using spin-on doping for high-efficiency both-side passivating contact silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 461–473.</p><p>Tang T, Yu C, Peng C-W, et al <b>Achievement of 25.54% power conversion efficiency by optimization of current losses at the front side of silicon heterojunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 449–460.</p><p>Tepner S, Lorenz A. <b>Printing technologies for silicon solar cell metallization: A comprehensive review.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 557–590.</p><p>Guo C, Jia R, Li X, et al <b>Influence of backside surface morphology on passivation and contact characteristics of TOPCON solar cells.</b> <i>Solar Energy</i> 2023; <b>258</b>: 278–288.</p><p>Canar HH, Bektaş G, Turan R. <b>On the passivation performance of SiN</b><sub><b>x</b></sub><b>, SiO</b><sub><b>x</b></sub><b>N</b><sub><b>y</b></sub> <b>and their stack on c-Si wafers for solar cell applications: Correlation with optical, chemical and interface properties.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>256</b>: 112356.</p><p>Liu Z, Lin H, Wu T, et al <b>Tailoring protective metals for high-efficient and stable dopant-free crystalline silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>256</b>: 112343.</p><p>Michel JI, Yan D, Phang SP, et al <b>Poly-Si passivating contacts prepared via phosphorus spin-on-doping: A comparison between different silicon deposition methods.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>255</b>: 112290.</p><p>Padhamnath P, Choi W-J, De Luna G, et al <b>Design, development and analysis of large-area industrial silicon solar cells featuring a full area polysilicon based passivating contact on the rear and selective passivating contacts on the front.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>256</b>: 112351.</p><p>Sio HC, Stuckelberger J, Basnet R, et al <b>Improving doped polycrystalline silicon passivating contacts with magnesium fluoride.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>254</b>: 112251.</p><p>Wu SF, Liu M, Jen AKY. <b>Prospects and challenges for perovskite-organic tandem solar cells.</b> <i>Joule</i> 2023; <b>7</b>(3): 484–502.</p><p>Phong Pham D, Han S, Phuong Nguyen M, et al <b>Potential structure of c-Si bottom sub-cell in bifacial four-terminal III-V/c-Si multijunction devices.</b> <i>Solar Energy</i> 2023; <b>257</b>: 10–17.</p><p>Kabaklı ÖŞ, Kox J, Tutsch L, et al <b>Minimizing electro-optical losses of ITO layers for monolithic perovskite silicon tandem solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>254</b>: 112246.</p><p>Patil H, Kim H, Kadam KD, et al <b>Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(10): 13238–13,248.</p><p>Ma LJ, Cui Y, Zhang JQ, et al <b>High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology.</b> <i>Advanced Materials</i> 2023; <b>35</b>(9): 2208926.</p><p>Lv J, Yang QG, Deng WY, et al <b>Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination.</b> <i>Chemical Engineering Journal</i> 2023; <b>465</b>: 142822.</p><p>Burlingame QC, Liu X, Ball ML, et al <b>Voltage-dependent excitation dynamics in UV-absorbing organic photovoltaics with efficient charge transfer exciton emission.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(4): 1742–1751.</p><p>Li SX, He CL, Chen TY, et al <b>Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2262–2,273.</p><p>Zhao XB, Sun R, Wu XH, et al <b>High-speed printing of a bulk-heterojunction architecture in organic solar cells films.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(4): 1711–1720.</p><p>Wang W, Cui Y, Zhang T, et al <b>High-performance organic photovoltaic cells under indoor lighting enabled by suppressing energetic disorders.</b> <i>Joule</i> 2023; <b>7</b>(5): 1067–1,079.</p><p>Yang Y, Wang JW, Zu YF, et al <b>Robust and hydrophobic interlayer material for efficient and highly stable organic solar cells.</b> <i>Joule</i> 2023; <b>7</b>(3): 545–557.</p><p>Kim TH, Park NW, Saeed MA, et al <b>Record indoor performance of organic photovoltaics with long-term stability enabled by self-assembled monolayer-based interface management.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108429.</p><p>Liu M, Ge X, Jiang X, et al <b>18% efficiency of ternary organic solar cells enabled by integrating a fused perylene diimide guest acceptor.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108501.</p><p>Fu JH, Fong PWK, Liu H, et al <b>19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1760.</p><p>Fu Y, Lee TH, Chin YC, et al <b>Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1870.</p><p>Jia ZR, Ma Q, Chen Z, et al <b>Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1236.</p><p>Li YX, Huang B, Zhang XN, et al <b>Lifetime over 10,000 hours for organic solar cells with Ir/IrO</b><sub><b>x</b></sub> <b>electron-transporting layer.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1241.</p><p>Wu X, Gao C, Chen Q, et al <b>High-performance vertical field-effect organic photovoltaics.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1579.</p><p>Venkatesan S, Chiang CY, Teng HS, et al <b>Monolithic quasi-solid-state dye sensitized solar cells prepared entirely by printing processes.</b> <i>Acs Sustainable Chemistry and Engineering</i> 2023; <b>11</b>(13): 5293–5,302.</p><p>Awai F, Sasaki M, Kinoshita T, et al <b>Energy-storable dye-sensitized solar cells with improved charge/discharge performance.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>(4): 044001.</p><p>Richhariya G, Kumar A, Shukla AK, et al <b>Efficient photosensitive light harvesting dye sensitized solar cell using hibiscus and rhodamine dyes.</b> <i>Journal of Power Sources</i> 2023; <b>572</b>: 233112.</p><p>Venkatesan S, My NHT, Teng HS, et al <b>Thin films of solid-state polymer electrolytes for dye-sensitized solar cells.</b> <i>Journal of Power Sources</i> 2023; <b>564</b>: 232896.</p><p>Zhou H, Kim HK. <b>Effective redox shuttles for polymer gel electrolytes-based quasi-solid-state dye-sensitized solar cells in outdoor and indoor applications: Comprehensive comparison and guidelines.</b> <i>Materials Today Energy</i> 2023; <b>34</b>: 101299.</p><p>Chen X, Huang Y, Chen Z. <b>Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell.</b> <i>Solar Energy</i> 2023; <b>258</b>: 351–360.</p><p>Ji XF, Zhou T, Fu Q, et al <b>Dopant-free two-dimensional hole transport small molecules enable efficient perovskite solar cells.</b> <i>Advanced Energy Materials</i> 2023; <b>13</b>(11): 2203756.</p><p>Chen CH, Wang ZK, Liao LS. <b>Perspective on perovskite indoor photovoltaics.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(13): 130501.</p><p>Huang J, Wang H, Chen C, et al <b>Adjustable skeleton of bilateral Lewis base passivator for CsPbI</b><sub><b>3</b></sub> <b>perovskite solar cells with PCE over 20% and superior stability.</b> <i>Chemical Engineering Journal</i> 2023; <b>466</b>: 143120.</p><p>Wang AL, Zuo CT, Niu XB, et al <b>Recent promise of lead-free halide perovskites in optoelectronic applications.</b> <i>Chemical Engineering Journal</i> 2023; <b>451</b>: 138926.</p><p>Xing YJ, Deng ZQ, Guo TH, et al <b>Managing iodine and tin based defects for efficient and stable mixed Sn-Pb perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>462</b>: 142122.</p><p>Gao Y, Ren FM, Sun DR, et al <b>Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2295–2,303.</p><p>Kim Y, Kim G, Park EY, et al <b>Alkylammonium bis (trifluoromethylsulfonyl)imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2226–2,238.</p><p>Ritzer DB, Nejand BA, Ruiz-Preciado MA, et al <b>Translucent perovskite photovoltaics for building integration.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2212–2,225.</p><p>Yang TH, Ma C, Cai WL, et al <b>Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells.</b> <i>Joule</i> 2023; <b>7</b>(3): 574–586.</p><p>Lan YJ, Wang YD, Lan ZR, et al <b>Thermally stable inverted perovskite solar cells using an electropolymerized Zn-porphyrin film as a dopant-free hole-transporting layer.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(13): 7085–7093.</p><p>Wang Y, Han MDX, Wang RB, et al <b>Buried interface passivation strategies for high-performance perovskite solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(16): 8573–8598.</p><p>Xie Z, Do Y, Choi SJ, et al <b>Perovskite solar cells approaching 25% PCE using side chain terminated hole transport materials with low concentration in a non-halogenated solvent process.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(17): 9608–9615.</p><p>Fan YP, Chen HR, Liu XM, et al <b>Myth behind metastable and stable n-hexylammonium bromide-based low-dimensional perovskites.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(14): 8209–8217.</p><p>Lou YJ, Zhang SS, Gu ZK, et al <b>Perovskite single crystals: Dimensional control, optoelectronic properties, and applications.</b> <i>Materials Today</i> 2023; <b>62</b>: 225–250.</p><p>Ma Y, Song QZ, Yang XY, et al <b>De-doping buried interface in p-i-n perovskite solar cells by utilizing compositional heterogeneity in depth.</b> <i>Nano Energy</i> 2023; <b>108</b>: 108250.</p><p>Seok HJ, Park JM, Jeong J, et al <b>Plasma damage-free deposition of transparent Sn-doped In</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>top cathode using isolated plasma soft deposition for perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>111</b>: 108431.</p><p>Wang HX, Zhang W, Wang BY, et al <b>Modulating buried interface with multi-fluorine containing organic molecule toward efficient NiO</b><sub><b>x</b></sub><b>-based inverted perovskite solar cell.</b> <i>Nano Energy</i> 2023; <b>111</b>: 108363.</p><p>Zou Y, Eichhorn J, Rieger S, et al <b>Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108449.</p><p>Kim T, Park S, Iyer V, et al <b>Mapping the pathways of photo-induced ion migration in organic–inorganic hybrid halide perovskites.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1846.</p><p>Ma CQ, Eickemeyer FT, Lee SH, et al <b>Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells.</b> <i>Science</i> 2023; <b>379</b>(6628): 173–178.</p><p>You S, Zeng HP, Liu YH, et al <b>Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules.</b> <i>Science</i> 2023; <b>379</b>(6629): 288–294.</p><p>Wu T, Hu JG, Chen S, et al <b>Energy band alignment by solution-processed aluminum doping strategy toward record efficiency in pulsed laser-deposited kesterite thin-film solar cell.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(11): 14291–14,303.</p><p>Xue JY, Yang XK, Bao XQ, et al <b>Improved carrier lifetimes of CdSe thin film via Te doping for photovoltaic application.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(14): 17858–17,866.</p><p>Shimamune Y, Tamaki H, Jimbo K. <b>Effect of post laser annealing on stacked structure of CZTS thin film solar cells.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: SK1020.</p><p>Tao SY, Dong LZ, Han JS, et al <b>Efficiency enhancement of CZTSe solar cells based on in situ K-doped precursor.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(16): 9085–9,096.</p><p>Yilmaz P, de Wild J, Aninat R, et al <b>In-depth analysis of potential-induced degradation in a commercial CIGS PV module.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 627–636.</p><p>Patel AK, Mishra R, Soni SK. <b>Electrical and optical parameters optimization and interface engineering for efficiency improvement of double CIGS absorber based solar cell.</b> <i>Solar Energy</i> 2023; <b>257</b>: 125–136.</p><p>Scarpulla MA, McCandless B, Phillips AB, et al <b>CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>255</b>: 112289.</p><p>Trifiletti V, Frioni L, Tseberlidis G, et al <b>Manganese-substituted kesterite thin-films for earth-abundant photovoltaic applications.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>254</b>: 112247.</p><p>Wang DD, Li YS, Yang YG, et al <b>How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation.</b> <i>Applied Energy</i> 2023; <b>341</b>: 121124.</p><p>Li XF, Wang YL, Jia YW, et al <b>Polyethylenimine-based bifunctional interfacial layer for efficient quantum dot photovoltaics.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(12): 123904.</p><p>Du DX, Wang LN, Ding D, et al <b>One-step synthesis of aqueous CdTe/CdSe composite QDs toward efficiency enhancement of solar cell.</b> <i>Chemical Engineering Journal</i> 2023; <b>461</b>: 142040.</p><p>Pandi DV, Saraswathi V, Venkatraman MR, et al <b>PbS quantum dots-sensitized ZnO nanorods-based third generation solar cells.</b> <i>Materials Today Chemistry</i> 2023; <b>29</b>: 101444.</p><p>Yuan JB, Yang XY, Zheng D, et al <b>Perovskite quantum dot-based tandem triboelectric-solar cell for boosting the efficiency and rain energy harvesting.</b> <i>Nano Energy</i> 2023; <b>110</b>: 10834.</p><p>Hou B, Mocanu FC, Cho Y, et al <b>Evolution of local structural motifs in colloidal quantum dot semiconductor nanocrystals leading to nanofaceting.</b> <i>Nano Letters</i> 2023; <b>23</b>(6): 2277–2286.</p><p>Jin BB, Liu XJ, Dong LC, et al <b>Improving loading of CdS/CdSe co-sensitized quantum dots to enhance the performance of solar cells by voltage-assisted SILAR deposition.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>255</b>: 112293.</p><p>Chen X, Ding K, Yang H, et al <b>Research on real-time identification method of model parameters for the photovoltaic array.</b> <i>Applied Energy</i> 2023; <b>342</b>: 121157.</p><p>Ding L, Zhu Y, Zheng L, et al <b>What is the path of photovoltaic building (BIPV or BAPV) promotion? The perspective of evolutionary games.</b> <i>Applied Energy</i> 2023; <b>340</b>: 121033.</p><p>Khan ZA, Hussain T, Baik SW. <b>Dual stream network with attention mechanism for photovoltaic power forecasting.</b> <i>Applied Energy</i> 2023; <b>338</b>: 120916.</p><p>Lee S, Lee JH, Jeong Y, et al <b>Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment.</b> <i>Applied Energy</i> 2023; <b>341</b>: 121130.</p><p>Olczak P. <b>Evaluation of degradation energy productivity of photovoltaic installations in long-term case study.</b> <i>Applied Energy</i> 2023; <b>343</b>: 121109.</p><p>Pirayawaraporn A, Sappaniran S, Nooraksa S, et al <b>Innovative sensorless dual-axis solar tracking system using particle filter.</b> <i>Applied Energy</i> 2023; <b>338</b>: 120946.</p><p>Polasek T, Cadik M. <b>Predicting photovoltaic power production using high-uncertainty weather forecasts.</b> <i>Applied Energy</i> 2023; <b>339</b>: 120989.</p><p>Scott C, Ahsan M, Albarbar A. <b>Machine learning for forecasting a photovoltaic (PV) generation system.</b> <i>Energy</i> 2023; <b>278</b>: 127807.</p><p>Raina G, Sinha S. <b>Experimental investigations of front and rear side soiling on bifacial PV module under different installations and environmental conditions.</b> <i>Energy for Sustainable Development</i> 2023; <b>72</b>: 301–313.</p><p>Hajji M, Yahyaoui Z, Mansouri M, et al <b>Fault detection and diagnosis in grid-connected PV systems under irradiance variations.</b> <i>Energy Reports</i> 2023; <b>9</b>: 4005–4017.</p><p>Liu X, Huang C, Wang L, et al <b>Improved super-resolution perception convolutional neural network for photovoltaics missing data recovery.</b> <i>Energy Reports</i> 2023; <b>9</b>: 388–395.</p><p>Schallenberg-Rodriguez J, Rodrigo-Bello JJ, Río-Gamero BD. <b>Agrivoltaic: How much electricity could photovoltaic greenhouses supply?</b> <i>Energy Reports</i> 2023; <b>9</b>: 5420–5,431.</p><p>Soler-Castillo Y, Sahni M, Leon-Castro E. <b>Performance predictability of photovoltaic systems: An approach to simulate the I-V curve dynamics.</b> <i>Energy Reports</i> 2023; <b>9</b>: 234–269.</p><p>Zhang Z, Wang J, Wei D, et al <b>An improved temporal convolutional network with attention mechanism for photovoltaic generation forecasting.</b> <i>Engineering Applications of Artificial Intelligence</i> 2023; <b>123</b>: 106273.</p><p>Chen TF, Gu L, Dally WJ, et al <b>A novel high-efficiency three-phase multilevel PV inverter with reduced DC-link capacitance.</b> <i>IEEE Transactions on Industrial Electronics</i> 2023; <b>70</b>(5): 4751–4,761.</p><p>Pascual J, García M, Marcos J, et al <b>Analysis of polyamide and fluoropolymer backsheets: Degradation and insulation failure in field-aged photovoltaic modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 494–505.</p><p>Springer M, Jordan DC, Barnes TM. <b>Future-proofing photovoltaics module reliability through a unifying predictive modeling framework.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 546–553.</p><p>Barbón A, Carreira-Fontao V, Bayón L, et al <b>Optimal design and cost analysis of single-axis tracking photovoltaic power plants.</b> <i>Renewable Energy</i> 2023; <b>211</b>: 626–646.</p><p>Di Giuseppe A, Cardinali M, Castellani B, et al <b>The impact of outdoor aging and soiling on the optic features of glass beads retro-reflective coatings.</b> <i>Solar Energy</i> 2023; <b>258</b>: 28–36.</p><p>Boiarkin V, Rajarajan M, Al-Zaili J, et al <b>A novel dynamic pricing model for a microgrid of prosumers with photovoltaic systems.</b> <i>Applied Energy</i> 2023; <b>342</b>: 121148.</p><p>Brown MA, Kale S, Kyeong-Cha M, et al <b>Exploring the willingness of consumers to electrify their homes.</b> <i>Applied Energy</i> 2023; <b>338</b>: 120791.</p><p>Song Z, Cao SL, Yang HX. <b>Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches.</b> <i>Applied Energy</i> 2023; <b>339</b>: 121005.</p><p>Agdas D, Barooah P. <b>On the economics of rooftop solar PV adoption.</b> <i>Energy Policy</i> 2023; <b>178</b>: 113611.</p><p>Lemay AC, Wagner S, Rand BP. <b>Current status and future potential of rooftop solar adoption in the United States.</b> <i>Energy Policy</i> 2023; <b>177</b>: 113571.</p><p>Ben Slama S, Mahmoud M. <b>A deep learning model for intelligent home energy management system using renewable energy.</b> <i>Engineering Applications of Artificial Intelligence</i> 2023; <b>123</b>: 106388.</p><p>Yeligeti M, Hu W, Scholz Y, et al <b>Cropland and rooftops: The global undertapped potential for solar photovoltaics.</b> <i>Environmental Research Letters</i> 2023; <b>18</b>(5): 054027.</p><p>Jia QA, Li YY, Yan Z, et al <b>Reactive power market design for distribution networks with high photovoltaic penetration.</b> <i>IEEE Transactions on Smart Grid</i> 2023; <b>14</b>(2): 1642–1,651.</p><p>Oteng D, Zuo J, Sharifi E. <b>An evaluation of the impact framework for product stewardship on end-of-life solar photovoltaic modules: An environmental lifecycle assessment.</b> <i>Journal of Cleaner Production</i> 2023; <b>411</b>: 137357.</p><p>Rossi F, Zuffi C, Parisi ML, et al <b>Comparative scenario-based LCA of renewable energy technologies focused on the end-of-life evaluation.</b> <i>Journal of Cleaner Production</i> 2023; <b>405</b>: 136931.</p><p>Zhao S, Yu L, Zhang Z. <b>Photovoltaic supply chain and government subsidy decision-making based on China's industrial distributed photovoltaic policy: A power perspective.</b> <i>Journal of Cleaner Production</i> 2023; <b>413</b>: 137438.</p><p>Zhang Z, Chen M, Zhong T, et al <b>Carbon mitigation potential afforded by rooftop photovoltaic in China.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2347.</p><p>Mao H, Chen X, Luo Y, et al <b>Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>179</b>: 113276.</p><p>He J, Iqbal W, Su F. <b>Nexus between renewable energy investment, green finance, and sustainable development: Role of industrial structure and technical innovations.</b> <i>Renewable Energy</i> 2023; <b>210</b>: 715–724.</p><p>Sun G, Li G, Dilanchiev A, et al <b>Promotion of green financing: Role of renewable energy and energy transition in China.</b> <i>Renewable Energy</i> 2023; <b>210</b>: 769–775.</p><p>Polverini D, Espinosa N, Eynard U, et al <b>Assessing the carbon footprint of photovoltaic modules through the EU Ecodesign Directive.</b> <i>Solar Energy</i> 2023; <b>257</b>: 1–9.</p><p>Rao RR, Priyadarshani S, Mani M. <b>Examining the use of end-of-life (EoL) PV panels in housing and sustainability.</b> <i>Solar Energy</i> 2023; <b>257</b>: 210–220.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"31 8\",\"pages\":\"870-874\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3722\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3722\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3722","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了帮助读者了解该领域的最新情况,每期的《光伏进展》都将包含与其目标和范围最相关的最近发表的期刊文章列表。这份名单来自范围极其广泛的期刊,包括IEEE光伏杂志、太阳能材料和太阳能电池、可再生能源、可再生和可持续能源评论、应用物理杂志和应用物理快报。为了帮助读者,我们将该列表分为几个大类,但请注意,这些分类并不严格。还要注意的是,被列入名单并不代表论文的质量得到认可。如果你有任何建议,请发邮件给Ziv Hameiri: [email protected]。高建军,张建军,张建军,等。新型聚光光伏技术进展及研究展望。应用能源2023;337: 120799。李建军,刘建军。光伏技术在汽车可持续发展中的应用。《2023年可再生和可持续能源评论》;181: 113317。彭志新,张元伟,孙晓康,等。基于原位x射线散射的叶片包覆三元非富勒烯有机光伏材料的实时探测和形貌分析。先进功能材料2023;33(14): 2213248。徐刚,柯志,庄超,等。近空间太阳光谱的测量与分析。2023年能源报告;9: 1764 - 1773。Nawrocki WJ, Jones MR, Frese RN,等。原位时间分辨光谱电化学揭示了生物杂化光电极性能的局限性。焦耳2023;7(3): 529 - 544。李建军,李建军,李建军,等。硅异质结太阳能电池的温度和光照依赖性研究。光伏技术进展:研究与应用2023;31(5): 536 - 545。李波,李志强,李志强,等。基于iec60891:2021的光伏组件I-V曲线校正方法。光伏技术进展:研究与应用2023;31(5): 474 - 493。Bhavya Jyothi KN, Narasimhan KL, Arora BM,等。嵌入太阳能组件的太阳能电池外部量子效率测量误差分析与缓解。太阳能2023;258: 319 - 324。李玉军,李永勇,Heger JE,等。晶体硅太阳能电池载流子选择性接触氮化钼的表面和界面演化。ac应用材料与接口2023;15(10): 13753 - 13760。王晓明,王晓明,王晓明,等。结晶硅切削刃在液态水中钝化的研究。日本应用物理学报(英文版);62: SK1022。[J],刘建军,刘建军,等。原子层沉积法制备Al2O3纳米层制备p+多晶硅的研究。应用物理学报(英文版);133(14): 145301。halam B, Kim M, Zhang Y,等。到2050年,光伏发电的银学习曲线和净零排放的银需求预测。光伏技术进展:研究与应用2023;31日(6):598 - 606。Heilig M, Wurmbrand D, Hahn G,等。一种采用常压化学气相沉积硼硅玻璃/磷硅玻璃层叠加激光掺杂的简化无掩膜交叉背接触太阳能电池工艺。光伏技术进展:研究与应用2023;31日(6):607 - 616。朴辉,金俊,崔东,等。基于自旋掺杂的硼掺杂多晶硅高效双侧钝化接触硅太阳能电池。光伏技术进展:研究与应用2023;31(5): 461 - 473。唐涛,于超,彭春伟,等。硅异质结太阳能电池前端电流损耗优化实现25.54%的功率转换效率。光伏技术进展:研究与应用2023;31(5): 449 - 460。李建军,李建军。硅太阳能电池金属化的研究进展。光伏技术进展:研究与应用2023;31日(6):557 - 590。郭超,贾锐,李鑫,等。后表面形貌对TOPCON太阳能电池钝化和接触特性的影响。太阳能2023;258: 278 - 288。Canar HH, bektau G, Turan R. SiNx, SiOxNy及其在c-Si硅片上的钝化性能:与光学,化学和界面性能的相关性。太阳能材料和太阳能电池2023;256: 112356。刘忠,林海,吴涛,等。高效稳定无掺杂晶体硅太阳能电池的保护金属。太阳能材料和太阳能电池2023;256: 112343。Michel JI, Yan D, Phang SP,等。磷自旋掺杂制备多晶硅钝化触点:不同硅沉积方法的比较。太阳能材料和太阳能电池2023;255: 112290。 Padhamnath P, Choi W-J, De Luna G, et al .大面积工业硅太阳能电池的设计、开发和分析,其后部为全面积多晶硅基钝化触点,前部为选择性钝化触点。太阳能材料和太阳能电池2023;256: 112351。Sio HC, Stuckelberger J, Basnet R,等。氟化镁对掺杂多晶硅钝化触点的影响。太阳能材料和太阳能电池2023;254: 112251。吴顺生,刘敏,任亚奇。钙钛矿-有机串联太阳能电池的前景与挑战。焦耳2023;7(3): 484 - 502。冯范东,韩绍平,王春华,等。双端面四端III-V/c-Si多结器件中c-Si底亚电池的电位结构。太阳能2023;257: - 17。王晓东,王晓东,王晓东,等。单片钙钛矿硅串联太阳能电池ITO层光电损耗的研究。太阳能材料和太阳能电池2023;254: 112246。Patil H, Kim H, Kadam KD,等。基于有机-无机卤化物钙钛矿的柔性弥漫性记忆电阻器。ac应用材料与接口2023;15(10): 13238 - 13248。马立军,崔勇,张建强,等。基于优化纤维网络形态的高效、机械鲁棒的全聚合物有机光伏电池。先进材料2023;35(9): 2208926。吕军,杨庆国,邓文伟,等。异构体受体的掺入使三元有机太阳能电池效率达到18.1%。化学工程学报(英文版);465: 142822。刘翔,刘晓东,王晓东,等。高效电荷转移激子发射紫外吸收有机光伏电池的电压依赖激发动力学研究。能源与环境科学2023;16(4): 1742 - 1751。李世祥,何春林,陈天宇,等。多组分有机光伏电池的精细分子结构和优化载流子管理,以实现19.3%的认证效率。能源与环境科学2023;16(5): 2262 - 2273。赵小兵,孙锐,吴小华,等。有机太阳能电池薄膜中体积异质结结构的高速印刷。能源与环境科学2023;16(4): 1711 - 1720。王伟,崔勇,张涛,等。室内光照下抑制能量紊乱的高性能有机光伏电池。焦耳2023;7(5): 1067 - 1079。杨勇,王建伟,祖云峰,等。高效、高稳定有机太阳能电池的鲁棒疏水中间层材料。焦耳2023;7(3): 545 - 557。Kim TH, Park NW, Saeed MA,等。基于自组装单层界面管理的有机光伏电池室内性能记录。纳米能源2023;112: 108429。刘敏,葛鑫,姜鑫,等。集成熔融苝二亚胺客体受体的三元有机太阳能电池的18%效率。纳米能源2023;112: 108501。傅建辉,方普凯,刘宏,等。19.31%二元有机太阳能电池和非单调中间态跃迁实现的低非辐射复合。自然通讯2023;14(1): 1760。傅莹,李涛,陈彦春,等。溶液处理非富勒烯受体分子取向依赖的能量转移及其对有机光伏性能的影响。自然通讯2023;14(1): 1870。贾志荣,马强,陈忠,等。抑制三重态激子产生的近红外吸收受体实现高性能串联有机太阳能电池。自然通讯2023;14(1): 1236。李云云,黄斌,张晓楠,等。Ir/IrOx电子传输层有机太阳能电池寿命超过10,000小时。自然通讯2023;14(1): 1241。吴旭,高超,陈强,等。高性能垂直场效应有机光伏。自然通讯2023;14(1): 1579。Venkatesan S, Chiang CY, Teng HS,等。完全通过印刷工艺制备的单片准固态染料敏化太阳能电池。Chemistry and Engineering 2023;11(13): 5293 - 5302。王晓明,王晓明,王晓明,等。染料敏化太阳能电池的研究进展。日本应用物理学报(英文版);62(4): 044001。李建军,李建军,李建军,等。基于木槿和罗丹明染料的高效光敏太阳能电池。电源学报(英文版)2023;572: 233112。陈建军,陈建军,陈建军,等。染料敏化太阳能电池固态聚合物电解质薄膜的研究。电源学报(英文版)2023;564: 232896。周海,金洪。基于聚合物凝胶电解质的准固态染料敏化太阳能电池在室外和室内应用的有效氧化还原穿梭:综合比较和指南。材料今日能源2023;34: 101299。陈旭,黄勇,陈忠。染料敏化太阳能电池驱动环形热电冷却器的电势评价。太阳能2023;258: 351 - 360。 季晓峰,周涛,付强,等。无掺杂的二维空穴传输小分子实现高效钙钛矿太阳能电池。先进能源材料2023;13(11): 2203756。陈超,王志康,廖立林。钙钛矿室内光伏展望。应用物理快报2023;122(13): 130501。黄军,王辉,陈超,等。PCE超过20%且稳定性优异的CsPbI3钙钛矿太阳能电池双侧Lewis碱钝化剂骨架可调。化学工程学报(英文版);466: 143120。王爱莲,左成成,牛晓斌,等。无铅卤化物钙钛矿在光电应用中的最新前景。化学工程学报(英文版);451: 138926。邢玉军,邓志强,郭涛,等。高效稳定的混合Sn-Pb钙钛矿太阳能电池中碘锡基缺陷的处理。化学工程学报(英文版);462: 142122。高勇,任峰峰,孙德立,等。消除埋地界面附近不稳定残留碘化铅提高钙钛矿太阳能电池的稳定性。能源与环境科学2023;16(5): 2295 - 2303。Kim Y, Kim G, Park EY,等。烷基铵二(三氟甲基磺酰基)亚胺作为钙钛矿太阳能电池空穴传输层的掺杂剂。能源与环境科学2023;16(5): 2226 - 2238。Ritzer DB, Nejand BA, Ruiz-Preciado MA等人,用于建筑集成的半透明钙钛矿光伏。能源与环境科学2023;16(5): 2212 - 2225。杨涛,马超,蔡文伟,等。基于脒基Dion-Jacobson的二维钙钛矿高效稳定的二维/三维异质结构钙钛矿太阳能电池。焦耳2023;7(3): 574 - 586。兰玉军,王永远,兰志荣,等。利用电聚合zn -卟啉薄膜作为无掺杂空穴传输层的热稳定倒钙钛矿太阳能电池。材料工程学报(英文版);11(13): 7085 - 7093。王勇,韩明霞,王宝荣,等。高性能钙钛矿太阳能电池的埋藏界面钝化策略。材料工程学报(英文版);11(16): 8573 - 8598。谢哲,杜勇,崔士杰,等。低浓度侧链端空穴传输材料制备PCE接近25%的钙钛矿太阳能电池。材料工程学报(英文版);11(17): 9608 - 9615。范玉萍,陈红华,刘晓明,等。亚稳和稳定的正己基溴化铵基低维钙钛矿背后的神话。美国化学学会杂志2023;145(14): 8209 - 8217。楼玉军,张世生,顾志康,等。钙钛矿单晶:尺寸控制、光电特性及应用。今日材料2023;62: 225 - 250。马勇,宋启忠,杨学勇,等。基于深度成分非均质性的p-i-n钙钛矿太阳能电池脱掺杂埋藏界面研究。纳米能源2023;108: 108250。石海军,朴建民,郑杰,等。钙钛矿太阳能电池透明掺锡In2O3顶阴极的等离子体无损伤沉积。纳米能源2023;111: 108431。王红霞,张伟,王碧,等。含多氟有机分子地埋界面调制制备高效niox基倒置钙钛矿太阳能电池。纳米能源2023;111: 108363。邹勇,李建军,李建军,等。钙钛矿太阳能电池的晶体取向和电子特性研究。纳米能源2023;112: 108449。Kim T, Park S, Iyer V,等。光诱导离子在有机-无机杂化卤化物钙钛矿中的迁移途径。自然通讯2023;14(1): 1846。马春强,李世强,李世强,等。稳定钙钛矿太阳能电池的面依赖性降解和面工程。科学2023;379(6628): 173 - 178。尤生,曾海平,刘永华,等。钙钛矿太阳能电池组件的极性聚合物p掺杂和晶粒调制。科学2023;379(6629): 288 - 294。吴涛,胡建刚,陈生,等。溶液处理铝掺杂策略对脉冲激光沉积kesterite薄膜太阳能电池记录效率的影响。ac应用材料与接口2023;15(11): 14291 - 14303。薛建勇,杨晓康,包晓强,等。Te掺杂提高CdSe薄膜载流子寿命的光电应用。ac应用材料与接口2023;15(14): 17858 - 17866。李建军,李建军,李建军,等。激光后退火对CZTS薄膜太阳能电池叠层结构的影响。日本应用物理学报(英文版);62: SK1020。陶世义,董丽珍,韩建军,等。基于原位k掺杂前驱体的CZTSe太阳能电池效率增强。材料工程学报(英文版);11(16): 9085 - 9096。杨建军,李建军,李建军,等。太阳能光伏组件电势诱导降解研究进展。光伏技术进展:研究与应用2023;31日(6):627 - 636。张建军,张建军,张建军,等。基于双CIGS吸收体的太阳能电池的光电参数优化及界面设计。太阳能2023;257: 125 - 136。 Scarpulla MA, McCandless B, Phillips AB,等。基于cdte的薄膜光伏:最新进展,当前挑战和未来展望。太阳能材料和太阳能电池2023;255: 112289。李建军,李建军,李建军,等。锰取代硅钙石薄膜在太阳能光伏发电中的应用。太阳能材料和太阳能电池2023;254: 112247。王德东,李玉英,杨永刚,等。如何最小化电压和填充因子损失以实现超过20%效率的硫系铅量子点太阳能电池:通过数值模拟预测的策略。应用能源2023;341: 121124。李晓峰,王玉林,贾彦文,等。高效量子点光伏的聚乙烯亚胺双功能界面层。应用物理快报2023;122(12): 123904。杜晓东,王林林,丁东,等。一步法合成水相CdTe/CdSe复合量子点,提高太阳能电池效率。化学工程学报(英文版);461: 142040。Pandi DV, Saraswathi V, Venkatraman MR,等基于PbS量子点敏化ZnO纳米棒的第三代太阳能电池。材料今日化学2023;29: 101444。袁建军,杨学勇,郑东,等。钙钛矿量子点串联摩擦电-太阳能电池提高效率和雨水能量收集。纳米能源2023;110: 10834。侯B, Mocanu FC, Cho Y,等。胶体量子点半导体纳米晶体局部结构基序的演化导致纳米面化。Nano Letters 2023;23(6): 2277 - 2286。金宝宝,刘晓军,董丽玲,等。电压辅助SILAR沉积提高CdS/CdSe共敏量子点负载以提高太阳能电池性能。太阳能材料和太阳能电池2023;255: 112293。陈鑫,丁凯,杨宏,等。光伏阵列模型参数实时识别方法研究。应用能源2023;342: 121157。丁磊,朱毅,郑磊,等。光伏建筑(BIPV或BAPV)推广的路径是什么?进化游戏的视角。应用能源2023;340: 121033。Khan ZA, Hussain T, Baik SW。具有关注机制的双流网络光伏电量预测。应用能源2023;338: 120916。李松,李建辉,郑勇,等。面向可持续发展和智能农业的光伏系统设计:农艺方面和安全评估的设计标准。应用能源2023;341: 121130。[j] .太阳能光伏发电系统的能源效率评价。应用能源2023;343: 121109。张建军,张建军,张建军,等。基于粒子滤波的无传感器太阳跟踪系统。应用能源2023;338: 120946。李建军,李建军。基于高不确定性天气预报的光伏发电预测。应用能源2023;339: 120989。李建军,刘建军,刘建军,等。基于机器学习的光伏发电系统预测。能源2023;278: 127807。Raina G, Sinha S.不同安装和环境条件下双面光伏组件前后侧污染的实验研究。2023年能源促进可持续发展;72: 301 - 313。李建军,张建军,李建军,等。基于多工况的并网光伏系统故障检测与诊断。2023年能源报告;9: 4005 - 4017。刘鑫,黄超,王磊,等。基于改进超分辨率感知卷积神经网络的光伏数据缺失恢复。2023年能源报告;9: 388 - 395。Schallenberg-Rodriguez J, Rodrigo-Bello JJ, Río-Gamero BD.农业光伏:光伏温室能提供多少电力?2023年能源报告;9: 5420 - 5431。李建军,李建军,李建军,等。光伏系统性能可预测性的一种模拟方法。2023年能源报告;9: 234 - 269。张震,王杰,魏东,等。一种改进的具有关注机制的时间卷积网络光伏发电预测方法。人工智能工程应用2023;123: 106273。陈福峰,顾磊,戴文杰,等。一种新型高效三相多电平光伏逆变器。IEEE工业电子学报(英文版);70(5): 4751 - 4761。Pascual J, García M, Marcos J,等。聚酰胺和含氟聚合物背板分析:现场老化光伏组件的退化和绝缘失效。光伏技术进展:研究与应用2023;31(5): 494 - 505。Springer M, Jordan DC, Barnes TM。通过统一的预测建模框架,实现面向未来的光伏组件可靠性。光伏技术进展:研究与应用2023;31(5): 546 - 553。Barbón A, carirera - fontao V, Bayón L,等。单轴跟踪光伏电站优化设计与成本分析。2023年可再生能源;211: 626 - 646。陈建军,陈建军,陈建军,等。室外老化和污染对玻璃微珠反光膜光学特性的影响。 太阳能2023;258:几个。李建军,李建军,李建军,等。基于微电网的光伏发电系统动态定价模型。应用能源2023;342: 121148。马建平,李建平,李建平,等。中国消费者家庭电气化意愿研究。应用能源2023;338: 120791。宋忠,曹绍林,杨海霞。基于优化可解释机器学习模型和gis方法的中国太阳辐射资源和光伏发电潜力评估应用能源2023;339: 121005。Agdas D, Barooah P.关于屋顶太阳能光伏采用的经济学。2023年能源政策;178: 113611。李梅AC,瓦格纳S,兰德BP。美国屋顶太阳能采用的现状和未来潜力。2023年能源政策;177: 113571。Ben Slama S, Mahmoud M.基于可再生能源的智能家居能源管理系统的深度学习模型。人工智能工程应用2023;123: 106388。叶利杰,胡伟,肖尔兹,等。农田和屋顶:全球未开发的太阳能光伏潜力。环境研究快报2023;18(5): 054027。贾保强,李云云,严忠,等。高光伏渗透率配电网无功市场设计。IEEE Transactions on Smart Grid 2023;14(2): 1642 - 1651。李建军,李建军,李建军,等。基于环境生命周期评价的太阳能光伏组件产品管理框架研究。清洁生产学报(英文版);411: 137357。罗世峰,张建军,张建军,等。基于场景分析的可再生能源技术生命周期分析。清洁生产学报(英文版);405: 136931。赵松,于磊,张铮。基于中国产业分布式光伏政策的光伏供应链与政府补贴决策。清洁生产学报(英文版);413: 137438。张志,陈敏,钟涛,等。中国屋顶光伏的碳减排潜力。自然通讯2023;14(1): 2347。毛慧,陈鑫,罗勇,等。基于卫星和航空影像估算太阳能光伏装机容量和潜力的研究进展与展望。《2023年可再生和可持续能源评论》;179: 113276。何俊,苏峰。可再生能源投资、绿色金融与可持续发展的关系:产业结构与技术创新的作用。2023年可再生能源;210: 715 - 724。李太阳G, G, Dilanchiev等促进绿色融资:在中国可再生能源和能源过渡的作用。2023年可再生能源;210: 769 - 775。Polverini D, Espinosa N, Eynard U,等。通过欧盟生态设计指令评估光伏组件的碳足迹。太阳能2023;257: 1 - 9。Rao RR, Priyadarshani S, Mani M.对报废(EoL)光伏板在住房和可持续性中的使用进行了研究。太阳能2023;257: 210 - 220。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PHOTOVOLTAICS LITERATURE SURVEY (No. 184)

In order to help readers stay up-to-date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at [email protected].

Gorjian S, Jamshidian FJ, Gorjian A, et al Technological advancements and research prospects of innovative concentrating agrivoltaics. Applied Energy 2023; 337: 120799.

Pochont NR, Sekhar Y R. Recent trends in photovoltaic technologies for sustainable transportation in passenger vehicles – A review. Renewable and Sustainable Energy Reviews 2023; 181: 113317.

Peng ZX, Zhang YW, Sun XK, et al Real-time probing and unraveling the morphology formation of blade-coated ternary nonfullerene organic photovoltaics with in situ x-ray scattering. Advanced Functional Materials 2023; 33(14): 2213248.

Xu G, Ke Z, Zhuang C, et al Measurements and analysis of solar spectrum in near space. Energy Reports 2023; 9: 1764–1773.

Nawrocki WJ, Jones MR, Frese RN, et al In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode performance. Joule 2023; 7(3): 529–544.

Le AHT, Srinivasa A, Bowden SG, et al Temperature and illumination dependence of silicon heterojunction solar cells with a wide range of wafer resistivities. Progress in Photovoltaics: Research and Applications 2023; 31(5): 536–545.

Li B, Diallo D, Migan-Dubois A, et al Performance evaluation of IEC 60891:2021 procedures for correcting I–V curves of photovoltaic modules under healthy and faulty conditions. Progress in Photovoltaics: Research and Applications 2023; 31(5): 474–493.

Bhavya Jyothi KN, Narasimhan KL, Arora BM, et al Analysis and mitigation of errors in external quantum efficiency measurement of solar cells embedded in solar modules. Solar Energy 2023; 258: 319–324.

Li YJ, Li YX, Heger JE, et al Revealing surface and interface evolution of molybdenum nitride as carrier-selective contacts for crystalline silicon solar cells. Acs Applied Materials and Interfaces 2023; 15(10): 13753–13760.

Hasumi M, Sameshima T, Mizuno T. Passivation of cut edges of crystalline silicon by heat treatment in liquid water. Japanese Journal of Applied Physics 2023; 62: SK1022.

Theeuwes RJ, Melskens J, Beyer W, et al Hydrogenation of p+ poly-Si by Al2O3 nanolayers prepared by atomic layer deposition. Journal of Applied Physics 2023; 133(14): 145301.

Hallam B, Kim M, Zhang Y, et al The silver learning curve for photovoltaics and projected silver demand for net-zero emissions by 2050. Progress in Photovoltaics: Research and Applications 2023; 31(6): 598–606.

Heilig M, Wurmbrand D, Hahn G, et al A simplified and masking-free doping process for interdigitated back contact solar cells using an atmospheric pressure chemical vapor deposition borosilicate glass/phosphosilicate glass layer stack for laser doping followed by a high temperature step. Progress in Photovoltaics: Research and Applications 2023; 31(6): 607–616.

Park H, Kim J, Choi D, et al Boron-doped polysilicon using spin-on doping for high-efficiency both-side passivating contact silicon solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(5): 461–473.

Tang T, Yu C, Peng C-W, et al Achievement of 25.54% power conversion efficiency by optimization of current losses at the front side of silicon heterojunction solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(5): 449–460.

Tepner S, Lorenz A. Printing technologies for silicon solar cell metallization: A comprehensive review. Progress in Photovoltaics: Research and Applications 2023; 31(6): 557–590.

Guo C, Jia R, Li X, et al Influence of backside surface morphology on passivation and contact characteristics of TOPCON solar cells. Solar Energy 2023; 258: 278–288.

Canar HH, Bektaş G, Turan R. On the passivation performance of SiNx, SiOxNy and their stack on c-Si wafers for solar cell applications: Correlation with optical, chemical and interface properties. Solar Energy Materials and Solar Cells 2023; 256: 112356.

Liu Z, Lin H, Wu T, et al Tailoring protective metals for high-efficient and stable dopant-free crystalline silicon solar cells. Solar Energy Materials and Solar Cells 2023; 256: 112343.

Michel JI, Yan D, Phang SP, et al Poly-Si passivating contacts prepared via phosphorus spin-on-doping: A comparison between different silicon deposition methods. Solar Energy Materials and Solar Cells 2023; 255: 112290.

Padhamnath P, Choi W-J, De Luna G, et al Design, development and analysis of large-area industrial silicon solar cells featuring a full area polysilicon based passivating contact on the rear and selective passivating contacts on the front. Solar Energy Materials and Solar Cells 2023; 256: 112351.

Sio HC, Stuckelberger J, Basnet R, et al Improving doped polycrystalline silicon passivating contacts with magnesium fluoride. Solar Energy Materials and Solar Cells 2023; 254: 112251.

Wu SF, Liu M, Jen AKY. Prospects and challenges for perovskite-organic tandem solar cells. Joule 2023; 7(3): 484–502.

Phong Pham D, Han S, Phuong Nguyen M, et al Potential structure of c-Si bottom sub-cell in bifacial four-terminal III-V/c-Si multijunction devices. Solar Energy 2023; 257: 10–17.

Kabaklı ÖŞ, Kox J, Tutsch L, et al Minimizing electro-optical losses of ITO layers for monolithic perovskite silicon tandem solar cells. Solar Energy Materials and Solar Cells 2023; 254: 112246.

Patil H, Kim H, Kadam KD, et al Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors. Acs Applied Materials and Interfaces 2023; 15(10): 13238–13,248.

Ma LJ, Cui Y, Zhang JQ, et al High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology. Advanced Materials 2023; 35(9): 2208926.

Lv J, Yang QG, Deng WY, et al Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination. Chemical Engineering Journal 2023; 465: 142822.

Burlingame QC, Liu X, Ball ML, et al Voltage-dependent excitation dynamics in UV-absorbing organic photovoltaics with efficient charge transfer exciton emission. Energy and Environmental Science 2023; 16(4): 1742–1751.

Li SX, He CL, Chen TY, et al Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency. Energy and Environmental Science 2023; 16(5): 2262–2,273.

Zhao XB, Sun R, Wu XH, et al High-speed printing of a bulk-heterojunction architecture in organic solar cells films. Energy and Environmental Science 2023; 16(4): 1711–1720.

Wang W, Cui Y, Zhang T, et al High-performance organic photovoltaic cells under indoor lighting enabled by suppressing energetic disorders. Joule 2023; 7(5): 1067–1,079.

Yang Y, Wang JW, Zu YF, et al Robust and hydrophobic interlayer material for efficient and highly stable organic solar cells. Joule 2023; 7(3): 545–557.

Kim TH, Park NW, Saeed MA, et al Record indoor performance of organic photovoltaics with long-term stability enabled by self-assembled monolayer-based interface management. Nano Energy 2023; 112: 108429.

Liu M, Ge X, Jiang X, et al 18% efficiency of ternary organic solar cells enabled by integrating a fused perylene diimide guest acceptor. Nano Energy 2023; 112: 108501.

Fu JH, Fong PWK, Liu H, et al 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nature Communications 2023; 14(1): 1760.

Fu Y, Lee TH, Chin YC, et al Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance. Nature Communications 2023; 14(1): 1870.

Jia ZR, Ma Q, Chen Z, et al Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nature Communications 2023; 14(1): 1236.

Li YX, Huang B, Zhang XN, et al Lifetime over 10,000 hours for organic solar cells with Ir/IrOx electron-transporting layer. Nature Communications 2023; 14(1): 1241.

Wu X, Gao C, Chen Q, et al High-performance vertical field-effect organic photovoltaics. Nature Communications 2023; 14(1): 1579.

Venkatesan S, Chiang CY, Teng HS, et al Monolithic quasi-solid-state dye sensitized solar cells prepared entirely by printing processes. Acs Sustainable Chemistry and Engineering 2023; 11(13): 5293–5,302.

Awai F, Sasaki M, Kinoshita T, et al Energy-storable dye-sensitized solar cells with improved charge/discharge performance. Japanese Journal of Applied Physics 2023; 62(4): 044001.

Richhariya G, Kumar A, Shukla AK, et al Efficient photosensitive light harvesting dye sensitized solar cell using hibiscus and rhodamine dyes. Journal of Power Sources 2023; 572: 233112.

Venkatesan S, My NHT, Teng HS, et al Thin films of solid-state polymer electrolytes for dye-sensitized solar cells. Journal of Power Sources 2023; 564: 232896.

Zhou H, Kim HK. Effective redox shuttles for polymer gel electrolytes-based quasi-solid-state dye-sensitized solar cells in outdoor and indoor applications: Comprehensive comparison and guidelines. Materials Today Energy 2023; 34: 101299.

Chen X, Huang Y, Chen Z. Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell. Solar Energy 2023; 258: 351–360.

Ji XF, Zhou T, Fu Q, et al Dopant-free two-dimensional hole transport small molecules enable efficient perovskite solar cells. Advanced Energy Materials 2023; 13(11): 2203756.

Chen CH, Wang ZK, Liao LS. Perspective on perovskite indoor photovoltaics. Applied Physics Letters 2023; 122(13): 130501.

Huang J, Wang H, Chen C, et al Adjustable skeleton of bilateral Lewis base passivator for CsPbI3 perovskite solar cells with PCE over 20% and superior stability. Chemical Engineering Journal 2023; 466: 143120.

Wang AL, Zuo CT, Niu XB, et al Recent promise of lead-free halide perovskites in optoelectronic applications. Chemical Engineering Journal 2023; 451: 138926.

Xing YJ, Deng ZQ, Guo TH, et al Managing iodine and tin based defects for efficient and stable mixed Sn-Pb perovskite solar cells. Chemical Engineering Journal 2023; 462: 142122.

Gao Y, Ren FM, Sun DR, et al Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells. Energy and Environmental Science 2023; 16(5): 2295–2,303.

Kim Y, Kim G, Park EY, et al Alkylammonium bis (trifluoromethylsulfonyl)imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells. Energy and Environmental Science 2023; 16(5): 2226–2,238.

Ritzer DB, Nejand BA, Ruiz-Preciado MA, et al Translucent perovskite photovoltaics for building integration. Energy and Environmental Science 2023; 16(5): 2212–2,225.

Yang TH, Ma C, Cai WL, et al Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 2023; 7(3): 574–586.

Lan YJ, Wang YD, Lan ZR, et al Thermally stable inverted perovskite solar cells using an electropolymerized Zn-porphyrin film as a dopant-free hole-transporting layer. Journal of Materials Chemistry A 2023; 11(13): 7085–7093.

Wang Y, Han MDX, Wang RB, et al Buried interface passivation strategies for high-performance perovskite solar cells. Journal of Materials Chemistry A 2023; 11(16): 8573–8598.

Xie Z, Do Y, Choi SJ, et al Perovskite solar cells approaching 25% PCE using side chain terminated hole transport materials with low concentration in a non-halogenated solvent process. Journal of Materials Chemistry A 2023; 11(17): 9608–9615.

Fan YP, Chen HR, Liu XM, et al Myth behind metastable and stable n-hexylammonium bromide-based low-dimensional perovskites. Journal of the American Chemical Society 2023; 145(14): 8209–8217.

Lou YJ, Zhang SS, Gu ZK, et al Perovskite single crystals: Dimensional control, optoelectronic properties, and applications. Materials Today 2023; 62: 225–250.

Ma Y, Song QZ, Yang XY, et al De-doping buried interface in p-i-n perovskite solar cells by utilizing compositional heterogeneity in depth. Nano Energy 2023; 108: 108250.

Seok HJ, Park JM, Jeong J, et al Plasma damage-free deposition of transparent Sn-doped In2O3 top cathode using isolated plasma soft deposition for perovskite solar cells. Nano Energy 2023; 111: 108431.

Wang HX, Zhang W, Wang BY, et al Modulating buried interface with multi-fluorine containing organic molecule toward efficient NiOx-based inverted perovskite solar cell. Nano Energy 2023; 111: 108363.

Zou Y, Eichhorn J, Rieger S, et al Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells. Nano Energy 2023; 112: 108449.

Kim T, Park S, Iyer V, et al Mapping the pathways of photo-induced ion migration in organic–inorganic hybrid halide perovskites. Nature Communications 2023; 14(1): 1846.

Ma CQ, Eickemeyer FT, Lee SH, et al Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 2023; 379(6628): 173–178.

You S, Zeng HP, Liu YH, et al Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science 2023; 379(6629): 288–294.

Wu T, Hu JG, Chen S, et al Energy band alignment by solution-processed aluminum doping strategy toward record efficiency in pulsed laser-deposited kesterite thin-film solar cell. Acs Applied Materials and Interfaces 2023; 15(11): 14291–14,303.

Xue JY, Yang XK, Bao XQ, et al Improved carrier lifetimes of CdSe thin film via Te doping for photovoltaic application. Acs Applied Materials and Interfaces 2023; 15(14): 17858–17,866.

Shimamune Y, Tamaki H, Jimbo K. Effect of post laser annealing on stacked structure of CZTS thin film solar cells. Japanese Journal of Applied Physics 2023; 62: SK1020.

Tao SY, Dong LZ, Han JS, et al Efficiency enhancement of CZTSe solar cells based on in situ K-doped precursor. Journal of Materials Chemistry A 2023; 11(16): 9085–9,096.

Yilmaz P, de Wild J, Aninat R, et al In-depth analysis of potential-induced degradation in a commercial CIGS PV module. Progress in Photovoltaics: Research and Applications 2023; 31(6): 627–636.

Patel AK, Mishra R, Soni SK. Electrical and optical parameters optimization and interface engineering for efficiency improvement of double CIGS absorber based solar cell. Solar Energy 2023; 257: 125–136.

Scarpulla MA, McCandless B, Phillips AB, et al CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects. Solar Energy Materials and Solar Cells 2023; 255: 112289.

Trifiletti V, Frioni L, Tseberlidis G, et al Manganese-substituted kesterite thin-films for earth-abundant photovoltaic applications. Solar Energy Materials and Solar Cells 2023; 254: 112247.

Wang DD, Li YS, Yang YG, et al How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation. Applied Energy 2023; 341: 121124.

Li XF, Wang YL, Jia YW, et al Polyethylenimine-based bifunctional interfacial layer for efficient quantum dot photovoltaics. Applied Physics Letters 2023; 122(12): 123904.

Du DX, Wang LN, Ding D, et al One-step synthesis of aqueous CdTe/CdSe composite QDs toward efficiency enhancement of solar cell. Chemical Engineering Journal 2023; 461: 142040.

Pandi DV, Saraswathi V, Venkatraman MR, et al PbS quantum dots-sensitized ZnO nanorods-based third generation solar cells. Materials Today Chemistry 2023; 29: 101444.

Yuan JB, Yang XY, Zheng D, et al Perovskite quantum dot-based tandem triboelectric-solar cell for boosting the efficiency and rain energy harvesting. Nano Energy 2023; 110: 10834.

Hou B, Mocanu FC, Cho Y, et al Evolution of local structural motifs in colloidal quantum dot semiconductor nanocrystals leading to nanofaceting. Nano Letters 2023; 23(6): 2277–2286.

Jin BB, Liu XJ, Dong LC, et al Improving loading of CdS/CdSe co-sensitized quantum dots to enhance the performance of solar cells by voltage-assisted SILAR deposition. Solar Energy Materials and Solar Cells 2023; 255: 112293.

Chen X, Ding K, Yang H, et al Research on real-time identification method of model parameters for the photovoltaic array. Applied Energy 2023; 342: 121157.

Ding L, Zhu Y, Zheng L, et al What is the path of photovoltaic building (BIPV or BAPV) promotion? The perspective of evolutionary games. Applied Energy 2023; 340: 121033.

Khan ZA, Hussain T, Baik SW. Dual stream network with attention mechanism for photovoltaic power forecasting. Applied Energy 2023; 338: 120916.

Lee S, Lee JH, Jeong Y, et al Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment. Applied Energy 2023; 341: 121130.

Olczak P. Evaluation of degradation energy productivity of photovoltaic installations in long-term case study. Applied Energy 2023; 343: 121109.

Pirayawaraporn A, Sappaniran S, Nooraksa S, et al Innovative sensorless dual-axis solar tracking system using particle filter. Applied Energy 2023; 338: 120946.

Polasek T, Cadik M. Predicting photovoltaic power production using high-uncertainty weather forecasts. Applied Energy 2023; 339: 120989.

Scott C, Ahsan M, Albarbar A. Machine learning for forecasting a photovoltaic (PV) generation system. Energy 2023; 278: 127807.

Raina G, Sinha S. Experimental investigations of front and rear side soiling on bifacial PV module under different installations and environmental conditions. Energy for Sustainable Development 2023; 72: 301–313.

Hajji M, Yahyaoui Z, Mansouri M, et al Fault detection and diagnosis in grid-connected PV systems under irradiance variations. Energy Reports 2023; 9: 4005–4017.

Liu X, Huang C, Wang L, et al Improved super-resolution perception convolutional neural network for photovoltaics missing data recovery. Energy Reports 2023; 9: 388–395.

Schallenberg-Rodriguez J, Rodrigo-Bello JJ, Río-Gamero BD. Agrivoltaic: How much electricity could photovoltaic greenhouses supply? Energy Reports 2023; 9: 5420–5,431.

Soler-Castillo Y, Sahni M, Leon-Castro E. Performance predictability of photovoltaic systems: An approach to simulate the I-V curve dynamics. Energy Reports 2023; 9: 234–269.

Zhang Z, Wang J, Wei D, et al An improved temporal convolutional network with attention mechanism for photovoltaic generation forecasting. Engineering Applications of Artificial Intelligence 2023; 123: 106273.

Chen TF, Gu L, Dally WJ, et al A novel high-efficiency three-phase multilevel PV inverter with reduced DC-link capacitance. IEEE Transactions on Industrial Electronics 2023; 70(5): 4751–4,761.

Pascual J, García M, Marcos J, et al Analysis of polyamide and fluoropolymer backsheets: Degradation and insulation failure in field-aged photovoltaic modules. Progress in Photovoltaics: Research and Applications 2023; 31(5): 494–505.

Springer M, Jordan DC, Barnes TM. Future-proofing photovoltaics module reliability through a unifying predictive modeling framework. Progress in Photovoltaics: Research and Applications 2023; 31(5): 546–553.

Barbón A, Carreira-Fontao V, Bayón L, et al Optimal design and cost analysis of single-axis tracking photovoltaic power plants. Renewable Energy 2023; 211: 626–646.

Di Giuseppe A, Cardinali M, Castellani B, et al The impact of outdoor aging and soiling on the optic features of glass beads retro-reflective coatings. Solar Energy 2023; 258: 28–36.

Boiarkin V, Rajarajan M, Al-Zaili J, et al A novel dynamic pricing model for a microgrid of prosumers with photovoltaic systems. Applied Energy 2023; 342: 121148.

Brown MA, Kale S, Kyeong-Cha M, et al Exploring the willingness of consumers to electrify their homes. Applied Energy 2023; 338: 120791.

Song Z, Cao SL, Yang HX. Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches. Applied Energy 2023; 339: 121005.

Agdas D, Barooah P. On the economics of rooftop solar PV adoption. Energy Policy 2023; 178: 113611.

Lemay AC, Wagner S, Rand BP. Current status and future potential of rooftop solar adoption in the United States. Energy Policy 2023; 177: 113571.

Ben Slama S, Mahmoud M. A deep learning model for intelligent home energy management system using renewable energy. Engineering Applications of Artificial Intelligence 2023; 123: 106388.

Yeligeti M, Hu W, Scholz Y, et al Cropland and rooftops: The global undertapped potential for solar photovoltaics. Environmental Research Letters 2023; 18(5): 054027.

Jia QA, Li YY, Yan Z, et al Reactive power market design for distribution networks with high photovoltaic penetration. IEEE Transactions on Smart Grid 2023; 14(2): 1642–1,651.

Oteng D, Zuo J, Sharifi E. An evaluation of the impact framework for product stewardship on end-of-life solar photovoltaic modules: An environmental lifecycle assessment. Journal of Cleaner Production 2023; 411: 137357.

Rossi F, Zuffi C, Parisi ML, et al Comparative scenario-based LCA of renewable energy technologies focused on the end-of-life evaluation. Journal of Cleaner Production 2023; 405: 136931.

Zhao S, Yu L, Zhang Z. Photovoltaic supply chain and government subsidy decision-making based on China's industrial distributed photovoltaic policy: A power perspective. Journal of Cleaner Production 2023; 413: 137438.

Zhang Z, Chen M, Zhong T, et al Carbon mitigation potential afforded by rooftop photovoltaic in China. Nature Communications 2023; 14(1): 2347.

Mao H, Chen X, Luo Y, et al Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images. Renewable and Sustainable Energy Reviews 2023; 179: 113276.

He J, Iqbal W, Su F. Nexus between renewable energy investment, green finance, and sustainable development: Role of industrial structure and technical innovations. Renewable Energy 2023; 210: 715–724.

Sun G, Li G, Dilanchiev A, et al Promotion of green financing: Role of renewable energy and energy transition in China. Renewable Energy 2023; 210: 769–775.

Polverini D, Espinosa N, Eynard U, et al Assessing the carbon footprint of photovoltaic modules through the EU Ecodesign Directive. Solar Energy 2023; 257: 1–9.

Rao RR, Priyadarshani S, Mani M. Examining the use of end-of-life (EoL) PV panels in housing and sustainability. Solar Energy 2023; 257: 210–220.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信