揭示表面氧空位在稳定富锂层状氧化物中的作用

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Kai Wang, Jimin Qiu, Fuchen Hou, Ming Yang, Kaiqi Nie, Jiaou Wang, Yichao Hou, Weiyuan Huang, Wenguang Zhao, Peixin Zhang, Junhao Lin, Jiangtao Hu, Feng Pan, Mingjian Zhang
{"title":"揭示表面氧空位在稳定富锂层状氧化物中的作用","authors":"Kai Wang,&nbsp;Jimin Qiu,&nbsp;Fuchen Hou,&nbsp;Ming Yang,&nbsp;Kaiqi Nie,&nbsp;Jiaou Wang,&nbsp;Yichao Hou,&nbsp;Weiyuan Huang,&nbsp;Wenguang Zhao,&nbsp;Peixin Zhang,&nbsp;Junhao Lin,&nbsp;Jiangtao Hu,&nbsp;Feng Pan,&nbsp;Mingjian Zhang","doi":"10.1002/aenm.202301216","DOIUrl":null,"url":null,"abstract":"<p>Li-rich layered oxides based on the anionic redox chemistry provide the highest practical capacity among all transition metal (TM) oxide cathodes but still struggle with poor cycling stability. Here, a certain amount of oxygen vacancies (OVs) are introduced into the ≈10 nm-thick surface region of Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub> through a long-time medium-temperature post-annealing. These surficial enriched OVs significantly suppress the generation of O-O dimers (O<sub>2</sub><sup>n−</sup>, 0 &lt; <i>n</i> &lt; 4) and the associated side reactions, thus facilitating the construction of a uniform and compact cathode/electrolyte interphase (CEI) layer on the surface. The CEI layer then decreases the further side reactions and TM dissolution and protects the bulk structure upon cycling, eventually leading to enhanced cycling stability, demonstrated in both half cells and full cells. An in-depth understanding of OVs is expected to benefit the design of stable cathode materials based on anionic redox chemistry.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"13 32","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unraveling the Role of Surficial Oxygen Vacancies in Stabilizing Li-Rich Layered Oxides\",\"authors\":\"Kai Wang,&nbsp;Jimin Qiu,&nbsp;Fuchen Hou,&nbsp;Ming Yang,&nbsp;Kaiqi Nie,&nbsp;Jiaou Wang,&nbsp;Yichao Hou,&nbsp;Weiyuan Huang,&nbsp;Wenguang Zhao,&nbsp;Peixin Zhang,&nbsp;Junhao Lin,&nbsp;Jiangtao Hu,&nbsp;Feng Pan,&nbsp;Mingjian Zhang\",\"doi\":\"10.1002/aenm.202301216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Li-rich layered oxides based on the anionic redox chemistry provide the highest practical capacity among all transition metal (TM) oxide cathodes but still struggle with poor cycling stability. Here, a certain amount of oxygen vacancies (OVs) are introduced into the ≈10 nm-thick surface region of Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub> through a long-time medium-temperature post-annealing. These surficial enriched OVs significantly suppress the generation of O-O dimers (O<sub>2</sub><sup>n−</sup>, 0 &lt; <i>n</i> &lt; 4) and the associated side reactions, thus facilitating the construction of a uniform and compact cathode/electrolyte interphase (CEI) layer on the surface. The CEI layer then decreases the further side reactions and TM dissolution and protects the bulk structure upon cycling, eventually leading to enhanced cycling stability, demonstrated in both half cells and full cells. An in-depth understanding of OVs is expected to benefit the design of stable cathode materials based on anionic redox chemistry.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"13 32\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202301216\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202301216","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

基于阴离子氧化还原化学的富锂层状氧化物在所有过渡金属(TM)氧化物阴极中提供了最高的实用容量,但仍然存在较差的循环稳定性。通过长时间的中温后退火,在Li1.2Ni0.13Co0.13Mn0.54O2≈10 nm厚的表面区域引入了一定量的氧空位(OVs)。这些表面富集的OVs显著抑制O-O二聚体的生成(O2n−,0 <n & lt;4)和相关的副反应,从而促进了表面上均匀紧凑的阴极/电解质界面(CEI)层的构建。然后,CEI层减少了进一步的副反应和TM溶解,并在循环时保护了整体结构,最终提高了循环稳定性,在半电池和全电池中都得到了证明。对OVs的深入了解将有助于基于阴离子氧化还原化学的稳定阴极材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the Role of Surficial Oxygen Vacancies in Stabilizing Li-Rich Layered Oxides

Unraveling the Role of Surficial Oxygen Vacancies in Stabilizing Li-Rich Layered Oxides

Li-rich layered oxides based on the anionic redox chemistry provide the highest practical capacity among all transition metal (TM) oxide cathodes but still struggle with poor cycling stability. Here, a certain amount of oxygen vacancies (OVs) are introduced into the ≈10 nm-thick surface region of Li1.2Ni0.13Co0.13Mn0.54O2 through a long-time medium-temperature post-annealing. These surficial enriched OVs significantly suppress the generation of O-O dimers (O2n−, 0 < n < 4) and the associated side reactions, thus facilitating the construction of a uniform and compact cathode/electrolyte interphase (CEI) layer on the surface. The CEI layer then decreases the further side reactions and TM dissolution and protects the bulk structure upon cycling, eventually leading to enhanced cycling stability, demonstrated in both half cells and full cells. An in-depth understanding of OVs is expected to benefit the design of stable cathode materials based on anionic redox chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信