Guillem Macip, Pol Garcia-Segura, Júlia Mestres-Truyol, Bryan Saldivar-Espinoza, María José Ojeda-Montes, Aleix Gimeno, Adrià Cereto-Massagué, Santiago Garcia-Vallvé, Gerard Pujadas
{"title":"欲速不达:基于对接的虚拟筛选对SARS-CoV-2主蛋白酶(M-pro)抑制药物再利用的重要回顾","authors":"Guillem Macip, Pol Garcia-Segura, Júlia Mestres-Truyol, Bryan Saldivar-Espinoza, María José Ojeda-Montes, Aleix Gimeno, Adrià Cereto-Massagué, Santiago Garcia-Vallvé, Gerard Pujadas","doi":"10.1002/med.21862","DOIUrl":null,"url":null,"abstract":"<p>This review makes a critical evaluation of 61 peer-reviewed manuscripts that use a docking step in a virtual screening (VS) protocol to predict SARS-CoV-2 M-pro (M-pro) inhibitors in approved or investigational drugs. Various manuscripts predict different compounds, even when they use a similar initial dataset and methodology, and most of them do not validate their methodology or results. In addition, a set of known 150 SARS-CoV-2 M-pro inhibitors extracted from the literature and a second set of 81 M-pro inhibitors and 113 inactive compounds obtained from the COVID Moonshot project were used to evaluate the reliability of using docking scores as feasible predictors of the potency of a SARS-CoV-2 M-pro inhibitor. Using two SARS-CoV-2 M-pro structures and five protein-ligand docking programs, we proved that the correlation between the pIC<sub>50</sub> and docking scores is not good. Neither was any correlation found between the pIC<sub>50</sub> and the ∆G calculated with an MM-GBSA method. When a group of experimentally known inactive compounds was added, neither the docking scores or the ∆G were able to distinguish between compounds with or without M-pro experimental inhibitory activity. Performances improved when covalent and noncovalent inhibitors were treated separately, but were not good enough to fully support using a docking score as a cutoff value for selecting new putative M-pro inhibitors or predicting the relative bioactivity of a compound by comparison with a reference compound. The two sets of known SARS-CoV-2 M-pro inhibitors presented here could be used for validating future VS protocols which aim to predict M-pro inhibitors.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"42 2","pages":"744-769"},"PeriodicalIF":10.9000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/med.21862","citationCount":"30","resultStr":"{\"title\":\"Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition\",\"authors\":\"Guillem Macip, Pol Garcia-Segura, Júlia Mestres-Truyol, Bryan Saldivar-Espinoza, María José Ojeda-Montes, Aleix Gimeno, Adrià Cereto-Massagué, Santiago Garcia-Vallvé, Gerard Pujadas\",\"doi\":\"10.1002/med.21862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review makes a critical evaluation of 61 peer-reviewed manuscripts that use a docking step in a virtual screening (VS) protocol to predict SARS-CoV-2 M-pro (M-pro) inhibitors in approved or investigational drugs. Various manuscripts predict different compounds, even when they use a similar initial dataset and methodology, and most of them do not validate their methodology or results. In addition, a set of known 150 SARS-CoV-2 M-pro inhibitors extracted from the literature and a second set of 81 M-pro inhibitors and 113 inactive compounds obtained from the COVID Moonshot project were used to evaluate the reliability of using docking scores as feasible predictors of the potency of a SARS-CoV-2 M-pro inhibitor. Using two SARS-CoV-2 M-pro structures and five protein-ligand docking programs, we proved that the correlation between the pIC<sub>50</sub> and docking scores is not good. Neither was any correlation found between the pIC<sub>50</sub> and the ∆G calculated with an MM-GBSA method. When a group of experimentally known inactive compounds was added, neither the docking scores or the ∆G were able to distinguish between compounds with or without M-pro experimental inhibitory activity. Performances improved when covalent and noncovalent inhibitors were treated separately, but were not good enough to fully support using a docking score as a cutoff value for selecting new putative M-pro inhibitors or predicting the relative bioactivity of a compound by comparison with a reference compound. The two sets of known SARS-CoV-2 M-pro inhibitors presented here could be used for validating future VS protocols which aim to predict M-pro inhibitors.</p>\",\"PeriodicalId\":207,\"journal\":{\"name\":\"Medicinal Research Reviews\",\"volume\":\"42 2\",\"pages\":\"744-769\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/med.21862\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/med.21862\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/med.21862","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition
This review makes a critical evaluation of 61 peer-reviewed manuscripts that use a docking step in a virtual screening (VS) protocol to predict SARS-CoV-2 M-pro (M-pro) inhibitors in approved or investigational drugs. Various manuscripts predict different compounds, even when they use a similar initial dataset and methodology, and most of them do not validate their methodology or results. In addition, a set of known 150 SARS-CoV-2 M-pro inhibitors extracted from the literature and a second set of 81 M-pro inhibitors and 113 inactive compounds obtained from the COVID Moonshot project were used to evaluate the reliability of using docking scores as feasible predictors of the potency of a SARS-CoV-2 M-pro inhibitor. Using two SARS-CoV-2 M-pro structures and five protein-ligand docking programs, we proved that the correlation between the pIC50 and docking scores is not good. Neither was any correlation found between the pIC50 and the ∆G calculated with an MM-GBSA method. When a group of experimentally known inactive compounds was added, neither the docking scores or the ∆G were able to distinguish between compounds with or without M-pro experimental inhibitory activity. Performances improved when covalent and noncovalent inhibitors were treated separately, but were not good enough to fully support using a docking score as a cutoff value for selecting new putative M-pro inhibitors or predicting the relative bioactivity of a compound by comparison with a reference compound. The two sets of known SARS-CoV-2 M-pro inhibitors presented here could be used for validating future VS protocols which aim to predict M-pro inhibitors.
期刊介绍:
Medicinal Research Reviews is dedicated to publishing timely and critical reviews, as well as opinion-based articles, covering a broad spectrum of topics related to medicinal research. These contributions are authored by individuals who have made significant advancements in the field.
Encompassing a wide range of subjects, suitable topics include, but are not limited to, the underlying pathophysiology of crucial diseases and disease vectors, therapeutic approaches for diverse medical conditions, properties of molecular targets for therapeutic agents, innovative methodologies facilitating therapy discovery, genomics and proteomics, structure-activity correlations of drug series, development of new imaging and diagnostic tools, drug metabolism, drug delivery, and comprehensive examinations of the chemical, pharmacological, pharmacokinetic, pharmacodynamic, and clinical characteristics of significant drugs.