半稳定三层混合特性的最小模型程序

IF 0.9 1区 数学 Q2 MATHEMATICS
Teppei Takamatsu, Shou Yoshikawa
{"title":"半稳定三层混合特性的最小模型程序","authors":"Teppei Takamatsu, Shou Yoshikawa","doi":"10.1090/jag/813","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the minimal model theory for threefolds in mixed characteristic. As a generalization of a result of Kawamata, we show that the minimal model program (MMP) holds for strictly semi-stable schemes over an excellent Dedekind scheme <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of relative dimension two without any assumption on the residue characteristics of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We also prove that we can run a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper K Subscript upper X slash upper V Baseline plus normal upper Delta right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>V</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(K_{X/V}+\\Delta )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-MMP over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z\">\n <mml:semantics>\n <mml:mi>Z</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper X right-arrow upper Z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>Z</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\pi \\colon X \\to Z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a projective birational morphism of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-factorial quasi-projective <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-schemes and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma normal upper Delta right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(X,\\Delta )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a three-dimensional dlt pair with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E x c left-parenthesis pi right-parenthesis subset-of left floor normal upper Delta right floor\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>E</mml:mi>\n <mml:mi>x</mml:mi>\n <mml:mi>c</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">⌊<!-- ⌊ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">⌋<!-- ⌋ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Exc(\\pi ) \\subset \\lfloor \\Delta \\rfloor</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Minimal model program for semi-stable threefolds in mixed characteristic\",\"authors\":\"Teppei Takamatsu, Shou Yoshikawa\",\"doi\":\"10.1090/jag/813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the minimal model theory for threefolds in mixed characteristic. As a generalization of a result of Kawamata, we show that the minimal model program (MMP) holds for strictly semi-stable schemes over an excellent Dedekind scheme <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\">\\n <mml:semantics>\\n <mml:mi>V</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of relative dimension two without any assumption on the residue characteristics of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\">\\n <mml:semantics>\\n <mml:mi>V</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We also prove that we can run a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper K Subscript upper X slash upper V Baseline plus normal upper Delta right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>K</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>X</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>V</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(K_{X/V}+\\\\Delta )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-MMP over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z\\\">\\n <mml:semantics>\\n <mml:mi>Z</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi colon upper X right-arrow upper Z\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>π<!-- π --></mml:mi>\\n <mml:mo>:<!-- : --></mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi>Z</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi \\\\colon X \\\\to Z</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a projective birational morphism of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-factorial quasi-projective <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V\\\">\\n <mml:semantics>\\n <mml:mi>V</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">V</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-schemes and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper X comma normal upper Delta right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(X,\\\\Delta )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a three-dimensional dlt pair with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E x c left-parenthesis pi right-parenthesis subset-of left floor normal upper Delta right floor\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>E</mml:mi>\\n <mml:mi>x</mml:mi>\\n <mml:mi>c</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>π<!-- π --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⌊<!-- ⌊ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⌋<!-- ⌋ --></mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Exc(\\\\pi ) \\\\subset \\\\lfloor \\\\Delta \\\\rfloor</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/813\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/813","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 24

摘要

本文研究了三层混合特性的极小模型理论。作为Kawamata结果的推广,我们证明了最小模型规划(MMP)对于相对维数为2的优秀Dedekind格式V V上的严格半稳定格式成立,而不需要对V V的残差特征作任何假设。我们还证明了我们可以运行(K X/V+ Δ) ({K_X/V}+ \Delta) -MMP / zz,其中π:X→Z \pi\colon X \to Z是Q的投影双态射\mathbb Q{ -阶乘拟投影V V -方案和(X, Δ) (X,}\Delta)是由Exc(π)∧⌊Δ⌋Exc(\pi) \subset\lfloor\Delta\rfloor构成的三维dlt对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal model program for semi-stable threefolds in mixed characteristic

In this paper, we study the minimal model theory for threefolds in mixed characteristic. As a generalization of a result of Kawamata, we show that the minimal model program (MMP) holds for strictly semi-stable schemes over an excellent Dedekind scheme V V of relative dimension two without any assumption on the residue characteristics of V V . We also prove that we can run a ( K X / V + Δ ) (K_{X/V}+\Delta ) -MMP over Z Z , where π : X Z \pi \colon X \to Z is a projective birational morphism of Q \mathbb {Q} -factorial quasi-projective V V -schemes and ( X , Δ ) (X,\Delta ) is a three-dimensional dlt pair with E x c ( π ) Δ Exc(\pi ) \subset \lfloor \Delta \rfloor .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信