可对角化的p群不能在射影变体上精确地固定一个点

IF 0.9 1区 数学 Q2 MATHEMATICS
Olivier Haution
{"title":"可对角化的p群不能在射影变体上精确地固定一个点","authors":"Olivier Haution","doi":"10.1090/jag/749","DOIUrl":null,"url":null,"abstract":"We prove an algebraic version of classical theorem in topology, asserting that an abelian p-group action on a smooth projective variety of positive dimension cannot fix exactly one point. When the group has only two elements, we prove that the number of fixed points cannot be odd. The main tool is a construction originally used by Rost in the context of the degree formula. The framework of diagonalisable groups allows us to include the case of base fields of characteristic p.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2016-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jag/749","citationCount":"2","resultStr":"{\"title\":\"Diagonalisable $p$-groups cannot fix exactly one point on projective varieties\",\"authors\":\"Olivier Haution\",\"doi\":\"10.1090/jag/749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an algebraic version of classical theorem in topology, asserting that an abelian p-group action on a smooth projective variety of positive dimension cannot fix exactly one point. When the group has only two elements, we prove that the number of fixed points cannot be odd. The main tool is a construction originally used by Rost in the context of the degree formula. The framework of diagonalisable groups allows us to include the case of base fields of characteristic p.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jag/749\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/749\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/749","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了经典拓扑学定理的一个代数版本,证明了正维光滑射影变化上的阿贝尔p群作用不能精确地固定一个点。当群只有两个元素时,我们证明了不动点的个数不能是奇数。主要工具是Rost最初在度公式中使用的结构。可对角群的框架允许我们考虑特征p的基域的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagonalisable $p$-groups cannot fix exactly one point on projective varieties
We prove an algebraic version of classical theorem in topology, asserting that an abelian p-group action on a smooth projective variety of positive dimension cannot fix exactly one point. When the group has only two elements, we prove that the number of fixed points cannot be odd. The main tool is a construction originally used by Rost in the context of the degree formula. The framework of diagonalisable groups allows us to include the case of base fields of characteristic p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信