C. Galindo, F. Monserrat, Julio Jos'e Moyano-Fern'andez
{"title":"最小平面估值","authors":"C. Galindo, F. Monserrat, Julio Jos'e Moyano-Fern'andez","doi":"10.1090/JAG/722","DOIUrl":null,"url":null,"abstract":"<p>We consider the value <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove mu With caret left-parenthesis nu right-parenthesis equals limit Underscript m right-arrow normal infinity Endscripts m Superscript negative 1 Baseline a left-parenthesis m upper L right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">^<!-- ^ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:munder>\n <mml:mo movablelimits=\"true\" form=\"prefix\">lim</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:munder>\n <mml:msup>\n <mml:mi>m</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mi>a</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\hat {\\mu } (\\nu ) = \\lim _{m \\rightarrow \\infty } m^{-1} a(mL)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a left-parenthesis m upper L right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a(mL)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the last value of the vanishing sequence of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 0 Baseline left-parenthesis m upper L right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^0(mL)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> along a divisorial or irrational valuation <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\">\n <mml:semantics>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\nu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> centered at <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript double-struck upper P squared comma p\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo>,</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {O}_{\\mathbb {P}^2,p}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (respectively, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) being a line (respectively, a point) of the projective plane <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over an algebraically closed field. This value contains, for valuations, similar information as that given by Seshadri constants for points. It is always true that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove mu With caret left-parenthesis nu right-parenthesis greater-than-or-equal-to StartRoot 1 slash normal v normal o normal l left-parenthesis nu right-parenthesis EndRoot\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">^<!-- ^ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:msqrt>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">o</mml:mi>\n <mml:mi mathvariant=\"normal\">l</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:msqrt>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\hat {\\mu } (\\nu ) \\geq \\sqrt {1 / \\mathrm {vol}(\\nu )}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and minimal valuations are those satisfying the equality. In this paper, we prove that the Greuel–Lossen-Shustin Conjecture implies a variation of the Nagata Conjecture involving minimal valuations (that extends the one stated in [Comm. Anal. Geom. <bold>25</bold> (2017), pp. 125–161] to the whole set of divisorial and irrational valuations of the projective plane) which also implies the original Nagata Conjecture. We also provide infinitely many families of minimal very general valuations with an arbitrary number of Puiseux exponents and an asymptotic result that can be considered as evidence in the direction of the above-mentioned conjecture.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2016-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/722","citationCount":"9","resultStr":"{\"title\":\"Minimal plane valuations\",\"authors\":\"C. Galindo, F. Monserrat, Julio Jos'e Moyano-Fern'andez\",\"doi\":\"10.1090/JAG/722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the value <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove mu With caret left-parenthesis nu right-parenthesis equals limit Underscript m right-arrow normal infinity Endscripts m Superscript negative 1 Baseline a left-parenthesis m upper L right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">^<!-- ^ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:munder>\\n <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">lim</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>m</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:munder>\\n <mml:msup>\\n <mml:mi>m</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mi>a</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>m</mml:mi>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\hat {\\\\mu } (\\\\nu ) = \\\\lim _{m \\\\rightarrow \\\\infty } m^{-1} a(mL)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a left-parenthesis m upper L right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>a</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>m</mml:mi>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a(mL)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the last value of the vanishing sequence of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 0 Baseline left-parenthesis m upper L right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>m</mml:mi>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^0(mL)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> along a divisorial or irrational valuation <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu\\\">\\n <mml:semantics>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> centered at <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper O Subscript double-struck upper P squared comma p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">O</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mo>,</mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {O}_{\\\\mathbb {P}^2,p}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (respectively, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>) being a line (respectively, a point) of the projective plane <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over an algebraically closed field. This value contains, for valuations, similar information as that given by Seshadri constants for points. It is always true that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove mu With caret left-parenthesis nu right-parenthesis greater-than-or-equal-to StartRoot 1 slash normal v normal o normal l left-parenthesis nu right-parenthesis EndRoot\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">^<!-- ^ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:msqrt>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">l</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:msqrt>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\hat {\\\\mu } (\\\\nu ) \\\\geq \\\\sqrt {1 / \\\\mathrm {vol}(\\\\nu )}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and minimal valuations are those satisfying the equality. In this paper, we prove that the Greuel–Lossen-Shustin Conjecture implies a variation of the Nagata Conjecture involving minimal valuations (that extends the one stated in [Comm. Anal. Geom. <bold>25</bold> (2017), pp. 125–161] to the whole set of divisorial and irrational valuations of the projective plane) which also implies the original Nagata Conjecture. We also provide infinitely many families of minimal very general valuations with an arbitrary number of Puiseux exponents and an asymptotic result that can be considered as evidence in the direction of the above-mentioned conjecture.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAG/722\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/722\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/722","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider the value μ^(ν)=limm→∞m−1a(mL)\hat {\mu } (\nu ) = \lim _{m \rightarrow \infty } m^{-1} a(mL), where a(mL)a(mL) is the last value of the vanishing sequence of H0(mL)H^0(mL) along a divisorial or irrational valuation ν\nu centered at OP2,p\mathcal {O}_{\mathbb {P}^2,p}, LL (respectively, pp) being a line (respectively, a point) of the projective plane P2\mathbb {P}^2 over an algebraically closed field. This value contains, for valuations, similar information as that given by Seshadri constants for points. It is always true that μ^(ν)≥1/vol(ν)\hat {\mu } (\nu ) \geq \sqrt {1 / \mathrm {vol}(\nu )} and minimal valuations are those satisfying the equality. In this paper, we prove that the Greuel–Lossen-Shustin Conjecture implies a variation of the Nagata Conjecture involving minimal valuations (that extends the one stated in [Comm. Anal. Geom. 25 (2017), pp. 125–161] to the whole set of divisorial and irrational valuations of the projective plane) which also implies the original Nagata Conjecture. We also provide infinitely many families of minimal very general valuations with an arbitrary number of Puiseux exponents and an asymptotic result that can be considered as evidence in the direction of the above-mentioned conjecture.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.