最小平面估值

IF 0.9 1区 数学 Q2 MATHEMATICS
C. Galindo, F. Monserrat, Julio Jos'e Moyano-Fern'andez
{"title":"最小平面估值","authors":"C. Galindo, F. Monserrat, Julio Jos'e Moyano-Fern'andez","doi":"10.1090/JAG/722","DOIUrl":null,"url":null,"abstract":"<p>We consider the value <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove mu With caret left-parenthesis nu right-parenthesis equals limit Underscript m right-arrow normal infinity Endscripts m Superscript negative 1 Baseline a left-parenthesis m upper L right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">^<!-- ^ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:munder>\n <mml:mo movablelimits=\"true\" form=\"prefix\">lim</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:munder>\n <mml:msup>\n <mml:mi>m</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mi>a</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\hat {\\mu } (\\nu ) = \\lim _{m \\rightarrow \\infty } m^{-1} a(mL)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a left-parenthesis m upper L right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a(mL)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the last value of the vanishing sequence of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 0 Baseline left-parenthesis m upper L right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^0(mL)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> along a divisorial or irrational valuation <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\">\n <mml:semantics>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\nu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> centered at <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript double-struck upper P squared comma p\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo>,</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {O}_{\\mathbb {P}^2,p}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (respectively, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) being a line (respectively, a point) of the projective plane <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over an algebraically closed field. This value contains, for valuations, similar information as that given by Seshadri constants for points. It is always true that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove mu With caret left-parenthesis nu right-parenthesis greater-than-or-equal-to StartRoot 1 slash normal v normal o normal l left-parenthesis nu right-parenthesis EndRoot\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">^<!-- ^ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:msqrt>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">o</mml:mi>\n <mml:mi mathvariant=\"normal\">l</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:msqrt>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\hat {\\mu } (\\nu ) \\geq \\sqrt {1 / \\mathrm {vol}(\\nu )}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and minimal valuations are those satisfying the equality. In this paper, we prove that the Greuel–Lossen-Shustin Conjecture implies a variation of the Nagata Conjecture involving minimal valuations (that extends the one stated in [Comm. Anal. Geom. <bold>25</bold> (2017), pp. 125–161] to the whole set of divisorial and irrational valuations of the projective plane) which also implies the original Nagata Conjecture. We also provide infinitely many families of minimal very general valuations with an arbitrary number of Puiseux exponents and an asymptotic result that can be considered as evidence in the direction of the above-mentioned conjecture.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2016-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/722","citationCount":"9","resultStr":"{\"title\":\"Minimal plane valuations\",\"authors\":\"C. Galindo, F. Monserrat, Julio Jos'e Moyano-Fern'andez\",\"doi\":\"10.1090/JAG/722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the value <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove mu With caret left-parenthesis nu right-parenthesis equals limit Underscript m right-arrow normal infinity Endscripts m Superscript negative 1 Baseline a left-parenthesis m upper L right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">^<!-- ^ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:munder>\\n <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">lim</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>m</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n </mml:munder>\\n <mml:msup>\\n <mml:mi>m</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mi>a</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>m</mml:mi>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\hat {\\\\mu } (\\\\nu ) = \\\\lim _{m \\\\rightarrow \\\\infty } m^{-1} a(mL)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a left-parenthesis m upper L right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>a</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>m</mml:mi>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a(mL)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the last value of the vanishing sequence of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 0 Baseline left-parenthesis m upper L right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>m</mml:mi>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^0(mL)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> along a divisorial or irrational valuation <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu\\\">\\n <mml:semantics>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> centered at <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper O Subscript double-struck upper P squared comma p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">O</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mo>,</mml:mo>\\n <mml:mi>p</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {O}_{\\\\mathbb {P}^2,p}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (respectively, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>) being a line (respectively, a point) of the projective plane <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over an algebraically closed field. This value contains, for valuations, similar information as that given by Seshadri constants for points. It is always true that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove mu With caret left-parenthesis nu right-parenthesis greater-than-or-equal-to StartRoot 1 slash normal v normal o normal l left-parenthesis nu right-parenthesis EndRoot\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">^<!-- ^ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:msqrt>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">l</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:msqrt>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\hat {\\\\mu } (\\\\nu ) \\\\geq \\\\sqrt {1 / \\\\mathrm {vol}(\\\\nu )}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and minimal valuations are those satisfying the equality. In this paper, we prove that the Greuel–Lossen-Shustin Conjecture implies a variation of the Nagata Conjecture involving minimal valuations (that extends the one stated in [Comm. Anal. Geom. <bold>25</bold> (2017), pp. 125–161] to the whole set of divisorial and irrational valuations of the projective plane) which also implies the original Nagata Conjecture. We also provide infinitely many families of minimal very general valuations with an arbitrary number of Puiseux exponents and an asymptotic result that can be considered as evidence in the direction of the above-mentioned conjecture.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAG/722\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/722\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/722","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

我们考虑μ ^ (ν) = lim m→∞m−1 a (m L) \hat {\mu } (\nu ) = \lim _{m \rightarrow \infty } m^{-1} a(mL),其中a(mL) a(mL)是h0 (mL) H^0(mL)沿一个除数或无理数值ν的消失序列的最后值 \nu 以O p2, P为中心 \mathcal {o}_{\mathbb {p}^2,p} , L L(分别为p p)为射影平面p2的直线(分别为点) \mathbb {p}^2在代数闭域上。对于赋值,该值包含与由点的Seshadri常数给出的信息相似的信息。μ ^ (ν)≥1 / v o l (ν) \hat {\mu } (\nu ) \geq \sqrt {1 / \mathrm {vol}(\nu )} 最小值是那些满足等式的值。在本文中,我们证明了Greuel-Lossen-Shustin猜想隐含了涉及最小值的Nagata猜想的一个变体,它扩展了[Comm. Anal]中所述的一个变体。(Geom. 25 (2017), pp. 125-161),这也暗示了原始的长田猜想。我们还提供了具有任意数目的普塞指数的无限多极小极一般值族,并给出了一个渐近结果,可作为上述猜想方向的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal plane valuations

We consider the value μ ^ ( ν ) = lim m m 1 a ( m L ) \hat {\mu } (\nu ) = \lim _{m \rightarrow \infty } m^{-1} a(mL) , where a ( m L ) a(mL) is the last value of the vanishing sequence of H 0 ( m L ) H^0(mL) along a divisorial or irrational valuation ν \nu centered at O P 2 , p \mathcal {O}_{\mathbb {P}^2,p} , L L (respectively, p p ) being a line (respectively, a point) of the projective plane P 2 \mathbb {P}^2 over an algebraically closed field. This value contains, for valuations, similar information as that given by Seshadri constants for points. It is always true that μ ^ ( ν ) 1 / v o l ( ν ) \hat {\mu } (\nu ) \geq \sqrt {1 / \mathrm {vol}(\nu )} and minimal valuations are those satisfying the equality. In this paper, we prove that the Greuel–Lossen-Shustin Conjecture implies a variation of the Nagata Conjecture involving minimal valuations (that extends the one stated in [Comm. Anal. Geom. 25 (2017), pp. 125–161] to the whole set of divisorial and irrational valuations of the projective plane) which also implies the original Nagata Conjecture. We also provide infinitely many families of minimal very general valuations with an arbitrary number of Puiseux exponents and an asymptotic result that can be considered as evidence in the direction of the above-mentioned conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信