具有半样本反正则因子的流形的象

IF 0.9 1区 数学 Q2 MATHEMATICS
C. Birkar, Yifei Chen
{"title":"具有半样本反正则因子的流形的象","authors":"C. Birkar, Yifei Chen","doi":"10.1090/JAG/662","DOIUrl":null,"url":null,"abstract":"We prove that if f : X → Z is a smooth surjective morphism between projective manifolds and if −KX is semi-ample, then −KZ is also semi-ample. This was conjectured by Fujino and Gongyo. We list several counter-examples to show that this fails without the smoothness assumption on f . We prove the above result by proving some results concerning the moduli divisor of the canonical bundle formula associated to a klt-trivial fibration (X,B)→ Z.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"10 1","pages":"273-287"},"PeriodicalIF":0.9000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/662","citationCount":"10","resultStr":"{\"title\":\"Images of manifolds with semi-ample anti-canonical divisor\",\"authors\":\"C. Birkar, Yifei Chen\",\"doi\":\"10.1090/JAG/662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that if f : X → Z is a smooth surjective morphism between projective manifolds and if −KX is semi-ample, then −KZ is also semi-ample. This was conjectured by Fujino and Gongyo. We list several counter-examples to show that this fails without the smoothness assumption on f . We prove the above result by proving some results concerning the moduli divisor of the canonical bundle formula associated to a klt-trivial fibration (X,B)→ Z.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":\"10 1\",\"pages\":\"273-287\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAG/662\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/662\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/662","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

证明了如果f: X→Z是射影流形间的光滑满射态射,如果- KX是半样本,则- KZ也是半样本。这是Fujino和Gongyo推测的。我们列出了几个反例来证明,如果没有f的平滑假设,这种方法就失败了。我们通过证明与klt-平凡纤维(X,B)→Z相关的正则束公式的模因子的一些结果来证明上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Images of manifolds with semi-ample anti-canonical divisor
We prove that if f : X → Z is a smooth surjective morphism between projective manifolds and if −KX is semi-ample, then −KZ is also semi-ample. This was conjectured by Fujino and Gongyo. We list several counter-examples to show that this fails without the smoothness assumption on f . We prove the above result by proving some results concerning the moduli divisor of the canonical bundle formula associated to a klt-trivial fibration (X,B)→ Z.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信