Hua Yang, Bo Zhang, Maoxiang Jing, Xiangqian Shen, Li Wang, Hong Xu, Xiaohong Yan, Xiangming He
{"title":"长循环高压固态锂电池用高均相PDOL复合电解质的原位催化聚合研究","authors":"Hua Yang, Bo Zhang, Maoxiang Jing, Xiangqian Shen, Li Wang, Hong Xu, Xiaohong Yan, Xiangming He","doi":"10.1002/aenm.202201762","DOIUrl":null,"url":null,"abstract":"<p>High energy density solid-state lithium batteries require good ionic conductive solid electrolytes (SE) and stable matching with high-voltage electrode materials. Here, a highly homogeneous poly(1,3-dioxolane) composite solid electrolyte (CSE) membrane that can satisfy the above-mentioned requirements by in situ catalytic polymerization effect of yttria stabilized zirconia (YSZ) nanoparticles on the polymerization of 1,3-dioxolane (DOL), is reported. The well-dispersed YSZ nanoparticle catalyst leads to the polymerization conversion of DOL monomers up to 98.5%, which enlarges its electrochemical window exceeding 4.9 V. YSZ also significantly improves the room temperature ionic conductivity (2.75 × 10<sup>−4</sup> S cm<sup>−1</sup>) and enhances the cycle life of lithium metal anode. Based on this CSE, the Li(Ni<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>)O<sub>2</sub> (NCM622)-based solid-state lithium battery shows a long cycle life over 800 cycles. This investigation encourages polymer SE toward practical high energy solid-state batteries.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"12 39","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long-Cycle High-Voltage Solid-State Lithium Batteries\",\"authors\":\"Hua Yang, Bo Zhang, Maoxiang Jing, Xiangqian Shen, Li Wang, Hong Xu, Xiaohong Yan, Xiangming He\",\"doi\":\"10.1002/aenm.202201762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High energy density solid-state lithium batteries require good ionic conductive solid electrolytes (SE) and stable matching with high-voltage electrode materials. Here, a highly homogeneous poly(1,3-dioxolane) composite solid electrolyte (CSE) membrane that can satisfy the above-mentioned requirements by in situ catalytic polymerization effect of yttria stabilized zirconia (YSZ) nanoparticles on the polymerization of 1,3-dioxolane (DOL), is reported. The well-dispersed YSZ nanoparticle catalyst leads to the polymerization conversion of DOL monomers up to 98.5%, which enlarges its electrochemical window exceeding 4.9 V. YSZ also significantly improves the room temperature ionic conductivity (2.75 × 10<sup>−4</sup> S cm<sup>−1</sup>) and enhances the cycle life of lithium metal anode. Based on this CSE, the Li(Ni<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>)O<sub>2</sub> (NCM622)-based solid-state lithium battery shows a long cycle life over 800 cycles. This investigation encourages polymer SE toward practical high energy solid-state batteries.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"12 39\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202201762\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202201762","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 50
摘要
高能量密度固态锂电池需要良好的离子导电固体电解质(SE)和与高压电极材料的稳定匹配。本文报道了一种高度均匀的聚(1,3-二恶氧烷)复合固体电解质(CSE)膜,该膜通过氧化钇稳定氧化锆(YSZ)纳米粒子对1,3-二恶氧烷(DOL)聚合的原位催化聚合作用而满足上述要求。分散良好的YSZ纳米颗粒催化剂使DOL单体的聚合转化率高达98.5%,电化学窗口扩大到4.9 V以上。YSZ还显著提高了锂金属阳极的室温离子电导率(2.75 × 10−4 S cm−1),提高了锂金属阳极的循环寿命。基于该CSE, Li(Ni0.6Co0.2Mn0.2)O2 (NCM622)固态锂电池的循环寿命超过800次。这项研究鼓励聚合物SE向实用的高能固态电池发展。
In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long-Cycle High-Voltage Solid-State Lithium Batteries
High energy density solid-state lithium batteries require good ionic conductive solid electrolytes (SE) and stable matching with high-voltage electrode materials. Here, a highly homogeneous poly(1,3-dioxolane) composite solid electrolyte (CSE) membrane that can satisfy the above-mentioned requirements by in situ catalytic polymerization effect of yttria stabilized zirconia (YSZ) nanoparticles on the polymerization of 1,3-dioxolane (DOL), is reported. The well-dispersed YSZ nanoparticle catalyst leads to the polymerization conversion of DOL monomers up to 98.5%, which enlarges its electrochemical window exceeding 4.9 V. YSZ also significantly improves the room temperature ionic conductivity (2.75 × 10−4 S cm−1) and enhances the cycle life of lithium metal anode. Based on this CSE, the Li(Ni0.6Co0.2Mn0.2)O2 (NCM622)-based solid-state lithium battery shows a long cycle life over 800 cycles. This investigation encourages polymer SE toward practical high energy solid-state batteries.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.