{"title":"氧敏感的促炎细胞因子、凋亡信号和氧化还原反应转录因子在发育和病理生理中的作用。","authors":"J. Haddad","doi":"10.1080/13684730216401","DOIUrl":null,"url":null,"abstract":"The transition from placental to pulmonary-based respiration causes a relative hyperoxic shift, or oxidative stress, which the perinatal developing-lung experiences during birth. Dynamic changes in pO2, therefore, constitute a potential signaling mechanism for the regulation of the expression/activation of reduction-oxidation (redox)-sensitive and O2-responsive transcription factors, apoptosis signaling and pro-inflammatory cytokines. The variation in deltaPO2, in particular, differentially regulates the compartmentalization and function of the transcription factors hypoxia-inducible factor-1alpha (HIF-1alpha) and nuclear factor-kappaB (NF-kappaB). In addition, O2-evoked regulation of HIF-1alpha and NF-kappaB is closely coupled with the intracellular redox state, such that modulating redox equilibrium affects their expression/activation. The differential regulation of HIF-1alpha and NF-kappaB in vitro is paralleled by O2- and redox-dependent pathways governing the regulation of these factors during the transition from placental to pulmonary-based respiration ex vivo. Furthermore, the birth transition period in vitro and ex vivo regulates apoptosis signaling pathways in a redox-dependent manner, consistent with NF-kappaB playing an anti-apoptotic function. An association is established between an oxidative stress condition and the augmentation of a pro-inflammatory state in pathophysiology, regulated by the O2- and redox-sensitive pleiotropic cytokines.","PeriodicalId":79485,"journal":{"name":"Cytokines, cellular & molecular therapy","volume":"7 1 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13684730216401","citationCount":"70","resultStr":"{\"title\":\"Oxygen-sensitive pro-inflammatory cytokines, apoptosis signaling and redox-responsive transcription factors in development and pathophysiology.\",\"authors\":\"J. Haddad\",\"doi\":\"10.1080/13684730216401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transition from placental to pulmonary-based respiration causes a relative hyperoxic shift, or oxidative stress, which the perinatal developing-lung experiences during birth. Dynamic changes in pO2, therefore, constitute a potential signaling mechanism for the regulation of the expression/activation of reduction-oxidation (redox)-sensitive and O2-responsive transcription factors, apoptosis signaling and pro-inflammatory cytokines. The variation in deltaPO2, in particular, differentially regulates the compartmentalization and function of the transcription factors hypoxia-inducible factor-1alpha (HIF-1alpha) and nuclear factor-kappaB (NF-kappaB). In addition, O2-evoked regulation of HIF-1alpha and NF-kappaB is closely coupled with the intracellular redox state, such that modulating redox equilibrium affects their expression/activation. The differential regulation of HIF-1alpha and NF-kappaB in vitro is paralleled by O2- and redox-dependent pathways governing the regulation of these factors during the transition from placental to pulmonary-based respiration ex vivo. Furthermore, the birth transition period in vitro and ex vivo regulates apoptosis signaling pathways in a redox-dependent manner, consistent with NF-kappaB playing an anti-apoptotic function. An association is established between an oxidative stress condition and the augmentation of a pro-inflammatory state in pathophysiology, regulated by the O2- and redox-sensitive pleiotropic cytokines.\",\"PeriodicalId\":79485,\"journal\":{\"name\":\"Cytokines, cellular & molecular therapy\",\"volume\":\"7 1 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13684730216401\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokines, cellular & molecular therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13684730216401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokines, cellular & molecular therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13684730216401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oxygen-sensitive pro-inflammatory cytokines, apoptosis signaling and redox-responsive transcription factors in development and pathophysiology.
The transition from placental to pulmonary-based respiration causes a relative hyperoxic shift, or oxidative stress, which the perinatal developing-lung experiences during birth. Dynamic changes in pO2, therefore, constitute a potential signaling mechanism for the regulation of the expression/activation of reduction-oxidation (redox)-sensitive and O2-responsive transcription factors, apoptosis signaling and pro-inflammatory cytokines. The variation in deltaPO2, in particular, differentially regulates the compartmentalization and function of the transcription factors hypoxia-inducible factor-1alpha (HIF-1alpha) and nuclear factor-kappaB (NF-kappaB). In addition, O2-evoked regulation of HIF-1alpha and NF-kappaB is closely coupled with the intracellular redox state, such that modulating redox equilibrium affects their expression/activation. The differential regulation of HIF-1alpha and NF-kappaB in vitro is paralleled by O2- and redox-dependent pathways governing the regulation of these factors during the transition from placental to pulmonary-based respiration ex vivo. Furthermore, the birth transition period in vitro and ex vivo regulates apoptosis signaling pathways in a redox-dependent manner, consistent with NF-kappaB playing an anti-apoptotic function. An association is established between an oxidative stress condition and the augmentation of a pro-inflammatory state in pathophysiology, regulated by the O2- and redox-sensitive pleiotropic cytokines.