高效钙钛矿/硅串联太阳能电池在工业兼容的织构硅

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Luo, Haowen Luo, Hongjiang Li, Rui Xia, Xuntian Zheng, Zilong Huang, Zhou Liu, Han Gao, Xueling Zhang, Songlin Li, Zhiqiang Feng, Yifeng Chen, Hairen Tan
{"title":"高效钙钛矿/硅串联太阳能电池在工业兼容的织构硅","authors":"Xin Luo,&nbsp;Haowen Luo,&nbsp;Hongjiang Li,&nbsp;Rui Xia,&nbsp;Xuntian Zheng,&nbsp;Zilong Huang,&nbsp;Zhou Liu,&nbsp;Han Gao,&nbsp;Xueling Zhang,&nbsp;Songlin Li,&nbsp;Zhiqiang Feng,&nbsp;Yifeng Chen,&nbsp;Hairen Tan","doi":"10.1002/adma.202207883","DOIUrl":null,"url":null,"abstract":"<p>Monolithic perovskite/silicon tandem solar cells promise power-conversion efficiencies (PCEs) exceeding the Shockley-Queisser limit of single-junction solar cells. The conformal deposition of perovskites on industrially feasible textured silicon solar cells allows for both lowered manufacturing costs and a higher matched photocurrent density, compared to state-of-the-art tandems using front-side flat or mildly textured silicon. However, the inferior crystal quality of perovskite films grown on fully-textured silicon compromises the photovoltaic performance. Here, an anion-engineered additive strategy is developed to control the crystallization process of wide-bandgap perovskite films, which enables improved film crystallinity, reduced trap density, and conformal deposition on industrially textured silicon. This strategy allows the fabrication of 28.6%-efficient perovskite/silicon heterojunction tandem solar cells (certified 27.9%, 1 cm<sup>2</sup>). This approach is compatible with the scalable fabrication of tandems on industrially textured silicon, demonstrating an efficiency of 25.1% for an aperture area of 16 cm<sup>2</sup>. The anion-engineered additive significantly improves the operating stability of wide-bandgap perovskite solar cells, and the encapsulated tandem solar cells retain over 80% of their initial performance following 2000 h of operation under full 1-sun illumination in ambient conditions.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 9","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Efficient Perovskite/Silicon Tandem Solar Cells on Industrially Compatible Textured Silicon\",\"authors\":\"Xin Luo,&nbsp;Haowen Luo,&nbsp;Hongjiang Li,&nbsp;Rui Xia,&nbsp;Xuntian Zheng,&nbsp;Zilong Huang,&nbsp;Zhou Liu,&nbsp;Han Gao,&nbsp;Xueling Zhang,&nbsp;Songlin Li,&nbsp;Zhiqiang Feng,&nbsp;Yifeng Chen,&nbsp;Hairen Tan\",\"doi\":\"10.1002/adma.202207883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monolithic perovskite/silicon tandem solar cells promise power-conversion efficiencies (PCEs) exceeding the Shockley-Queisser limit of single-junction solar cells. The conformal deposition of perovskites on industrially feasible textured silicon solar cells allows for both lowered manufacturing costs and a higher matched photocurrent density, compared to state-of-the-art tandems using front-side flat or mildly textured silicon. However, the inferior crystal quality of perovskite films grown on fully-textured silicon compromises the photovoltaic performance. Here, an anion-engineered additive strategy is developed to control the crystallization process of wide-bandgap perovskite films, which enables improved film crystallinity, reduced trap density, and conformal deposition on industrially textured silicon. This strategy allows the fabrication of 28.6%-efficient perovskite/silicon heterojunction tandem solar cells (certified 27.9%, 1 cm<sup>2</sup>). This approach is compatible with the scalable fabrication of tandems on industrially textured silicon, demonstrating an efficiency of 25.1% for an aperture area of 16 cm<sup>2</sup>. The anion-engineered additive significantly improves the operating stability of wide-bandgap perovskite solar cells, and the encapsulated tandem solar cells retain over 80% of their initial performance following 2000 h of operation under full 1-sun illumination in ambient conditions.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202207883\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202207883","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 25

摘要

单片钙钛矿/硅串联太阳能电池承诺功率转换效率(pce)超过单结太阳能电池的Shockley-Queisser限制。钙钛矿的适形沉积在工业上可行的纹理硅太阳能电池上,与使用正面扁平或轻度纹理硅的最先进串联相比,既降低了制造成本,又具有更高的匹配光电流密度。然而,生长在全结构硅上的钙钛矿薄膜的晶体质量较差,影响了光伏性能。本研究开发了一种阴离子工程添加剂策略来控制宽带隙钙钛矿薄膜的结晶过程,从而提高了薄膜的结晶度,降低了陷阱密度,并在工业织构硅上实现了保形沉积。该策略允许制造28.6%效率的钙钛矿/硅异质结串联太阳能电池(认证27.9%,1 cm2)。这种方法与工业纹理硅上串联的可扩展制造相兼容,在16平方厘米的孔径面积下,效率为25.1%。阴离子工程添加剂显著提高了宽带隙钙钛矿太阳能电池的工作稳定性,封装的串联太阳能电池在环境条件下1个太阳光照下运行2000小时后,其性能保持在初始性能的80%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Perovskite/Silicon Tandem Solar Cells on Industrially Compatible Textured Silicon

Efficient Perovskite/Silicon Tandem Solar Cells on Industrially Compatible Textured Silicon

Monolithic perovskite/silicon tandem solar cells promise power-conversion efficiencies (PCEs) exceeding the Shockley-Queisser limit of single-junction solar cells. The conformal deposition of perovskites on industrially feasible textured silicon solar cells allows for both lowered manufacturing costs and a higher matched photocurrent density, compared to state-of-the-art tandems using front-side flat or mildly textured silicon. However, the inferior crystal quality of perovskite films grown on fully-textured silicon compromises the photovoltaic performance. Here, an anion-engineered additive strategy is developed to control the crystallization process of wide-bandgap perovskite films, which enables improved film crystallinity, reduced trap density, and conformal deposition on industrially textured silicon. This strategy allows the fabrication of 28.6%-efficient perovskite/silicon heterojunction tandem solar cells (certified 27.9%, 1 cm2). This approach is compatible with the scalable fabrication of tandems on industrially textured silicon, demonstrating an efficiency of 25.1% for an aperture area of 16 cm2. The anion-engineered additive significantly improves the operating stability of wide-bandgap perovskite solar cells, and the encapsulated tandem solar cells retain over 80% of their initial performance following 2000 h of operation under full 1-sun illumination in ambient conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信