{"title":"高效钙钛矿/硅串联太阳能电池在工业兼容的织构硅","authors":"Xin Luo, Haowen Luo, Hongjiang Li, Rui Xia, Xuntian Zheng, Zilong Huang, Zhou Liu, Han Gao, Xueling Zhang, Songlin Li, Zhiqiang Feng, Yifeng Chen, Hairen Tan","doi":"10.1002/adma.202207883","DOIUrl":null,"url":null,"abstract":"<p>Monolithic perovskite/silicon tandem solar cells promise power-conversion efficiencies (PCEs) exceeding the Shockley-Queisser limit of single-junction solar cells. The conformal deposition of perovskites on industrially feasible textured silicon solar cells allows for both lowered manufacturing costs and a higher matched photocurrent density, compared to state-of-the-art tandems using front-side flat or mildly textured silicon. However, the inferior crystal quality of perovskite films grown on fully-textured silicon compromises the photovoltaic performance. Here, an anion-engineered additive strategy is developed to control the crystallization process of wide-bandgap perovskite films, which enables improved film crystallinity, reduced trap density, and conformal deposition on industrially textured silicon. This strategy allows the fabrication of 28.6%-efficient perovskite/silicon heterojunction tandem solar cells (certified 27.9%, 1 cm<sup>2</sup>). This approach is compatible with the scalable fabrication of tandems on industrially textured silicon, demonstrating an efficiency of 25.1% for an aperture area of 16 cm<sup>2</sup>. The anion-engineered additive significantly improves the operating stability of wide-bandgap perovskite solar cells, and the encapsulated tandem solar cells retain over 80% of their initial performance following 2000 h of operation under full 1-sun illumination in ambient conditions.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 9","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Efficient Perovskite/Silicon Tandem Solar Cells on Industrially Compatible Textured Silicon\",\"authors\":\"Xin Luo, Haowen Luo, Hongjiang Li, Rui Xia, Xuntian Zheng, Zilong Huang, Zhou Liu, Han Gao, Xueling Zhang, Songlin Li, Zhiqiang Feng, Yifeng Chen, Hairen Tan\",\"doi\":\"10.1002/adma.202207883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monolithic perovskite/silicon tandem solar cells promise power-conversion efficiencies (PCEs) exceeding the Shockley-Queisser limit of single-junction solar cells. The conformal deposition of perovskites on industrially feasible textured silicon solar cells allows for both lowered manufacturing costs and a higher matched photocurrent density, compared to state-of-the-art tandems using front-side flat or mildly textured silicon. However, the inferior crystal quality of perovskite films grown on fully-textured silicon compromises the photovoltaic performance. Here, an anion-engineered additive strategy is developed to control the crystallization process of wide-bandgap perovskite films, which enables improved film crystallinity, reduced trap density, and conformal deposition on industrially textured silicon. This strategy allows the fabrication of 28.6%-efficient perovskite/silicon heterojunction tandem solar cells (certified 27.9%, 1 cm<sup>2</sup>). This approach is compatible with the scalable fabrication of tandems on industrially textured silicon, demonstrating an efficiency of 25.1% for an aperture area of 16 cm<sup>2</sup>. The anion-engineered additive significantly improves the operating stability of wide-bandgap perovskite solar cells, and the encapsulated tandem solar cells retain over 80% of their initial performance following 2000 h of operation under full 1-sun illumination in ambient conditions.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202207883\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202207883","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient Perovskite/Silicon Tandem Solar Cells on Industrially Compatible Textured Silicon
Monolithic perovskite/silicon tandem solar cells promise power-conversion efficiencies (PCEs) exceeding the Shockley-Queisser limit of single-junction solar cells. The conformal deposition of perovskites on industrially feasible textured silicon solar cells allows for both lowered manufacturing costs and a higher matched photocurrent density, compared to state-of-the-art tandems using front-side flat or mildly textured silicon. However, the inferior crystal quality of perovskite films grown on fully-textured silicon compromises the photovoltaic performance. Here, an anion-engineered additive strategy is developed to control the crystallization process of wide-bandgap perovskite films, which enables improved film crystallinity, reduced trap density, and conformal deposition on industrially textured silicon. This strategy allows the fabrication of 28.6%-efficient perovskite/silicon heterojunction tandem solar cells (certified 27.9%, 1 cm2). This approach is compatible with the scalable fabrication of tandems on industrially textured silicon, demonstrating an efficiency of 25.1% for an aperture area of 16 cm2. The anion-engineered additive significantly improves the operating stability of wide-bandgap perovskite solar cells, and the encapsulated tandem solar cells retain over 80% of their initial performance following 2000 h of operation under full 1-sun illumination in ambient conditions.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.