光伏文献综述(第185期)

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Ziv Hameiri
{"title":"光伏文献综述(第185期)","authors":"Ziv Hameiri","doi":"10.1002/pip.3735","DOIUrl":null,"url":null,"abstract":"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Parikh N, Akin S, Kalam A, et al <b>Probing the low-frequency response of impedance spectroscopy of halide perovskite single crystals using machine learning.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(23): 27801–27,808.</p><p>Du HQ, Jiang Y, Rothmann MU, et al <b>Transmission electron microscopy studies of organic–inorganic hybrid perovskites: Advances, challenges, and prospects.</b> <i>Applied Physics Reviews</i> 2023; <b>10</b>(2): 021314.</p><p>El Ainaoui K, Zaimi M, Assaid EM. <b>Innovative approaches to extract double-diode model physical parameters of a PV module serving outdoors under real-world conditions.</b> <i>Energy Conversion and Management</i> 2023; <b>292</b>: 117365.</p><p>Korovin A, Vasilev A, Egorov F, et al <b>Anomaly detection in electroluminescence images of heterojunction solar cells.</b> <i>Solar Energy</i> 2023; <b>259</b>: 130–136.</p><p>Panigrahi J, Pandey A, Bhattacharya S, et al <b>Impedance spectroscopy of amorphous/crystalline silicon heterojunction solar cells under dark and illumination.</b> <i>Solar Energy</i> 2023; <b>259</b>: 165–173.</p><p>Dwivedi P, Weber JW, Lee Chin R, et al <b>Deep learning method for enhancing luminescence image resolution.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112357.</p><p>Vallerotto G, Martín F, Macías J, et al <b>Collimated solar simulator for curved PV modules characterization.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112418.</p><p>Zhang HH, Zhang LP, Liu WZ, et al <b>Influence of intrinsic amorphous silicon passivation layer on the dark-state stability of SHJ cells.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(18): 182101.</p><p>Hammann B, Assmann N, Weiser PM, et al <b>The impact of different hydrogen configurations on light- and elevated-temperature- induced degradation.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 224–235.</p><p>Rocha D, Alves J, Lopes V, et al <b>Multidefect detection tool for large-scale PV plants: Segmentation and classification.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 291–295.</p><p>Hao B, Song YM, Jiang CH, et al <b>Comparing single-, double- and triple-layer anti-reflection coatings for ultra-low reflectance in silicon heterojunction solar cells.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>(6): 061002.</p><p>Geng Q, Wang Z, Liu Z, et al <b>Construction of V</b><sub><b>2</b></sub><b>O</b><sub><b>x</b></sub><b>/Si heterojunction and carrier-assisted collection for high-efficiency silicon solar cells.</b> <i>Materials Today Energy</i> 2023; <b>34</b>: 101317.</p><p>Liu WZ, Liu YJ, Yang ZQ, et al <b>Flexible solar cells based on foldable silicon wafers with blunted edges.</b> <i>Nature</i> 2023; <b>617</b>(7962): 717.</p><p>Arriaga Arruti O, Virtuani A, Ballif C. <b>Long-term performance and reliability of silicon heterojunction solar modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 664–677.</p><p>Lohmüller E, Baliozian P, Gutmann L, et al <b>TOPCon shingle solar cells: Thermal laser separation and passivated edge technology.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 729–737.</p><p>Lin N, Yang Z, Du H, et al <b>Excellent surface passivation of p-type TOPCon enabled by ozone-gas oxidation with a single-sided saturation current density of ∼ 4.5 fA/cm</b><sup><b>2</b></sup>. <i>Solar Energy</i> 2023; <b>259</b>: 348–355.</p><p>Abdul Fattah TO, Markevich VP, Gomes D, et al <b>Interactions of hydrogen atoms with boron and gallium in silicon crystals co-doped with phosphorus and acceptors.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112447.</p><p>Chen H, Zhang J, Hu D, et al <b>Improving quality of cast monocrystalline Si ingot with seed crystal strips and graphite soft felt.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112416.</p><p>Chen N, Tune D, Buchholz F, et al <b>Stable passivation of cut edges in encapsulated n-type silicon solar cells using Nafion polymer.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112401.</p><p>Du H, Wang T, Liu W, et al <b>24.18% efficiency TOPCon solar cells enabled by super hydrophilic carbon-doped polysilicon films combined with plated metal fingers.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112393.</p><p>Feng B, Liu Y, Chen W, et al <b>Differently shaped Ag crystallites and four current transport paths at sintered Ag/Si interface of crystalline silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112381.</p><p>Hammann B, Aßmann N, Schön J, et al <b>Understanding the impact of the cooling ramp of the fast-firing process on light- and elevated-temperature-induced degradation.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112462.</p><p>Linke J, Hoß J, Buchholz F, et al <b>Influence of the annealing temperature of (n) poly-Si/SiO</b><sub><b>x</b></sub> <b>passivating contacts on their firing stability.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112415.</p><p>Ma S, Liao B, Qiao FY, et al <b>24.7% industrial tunnel oxide passivated contact solar cells prepared through tube PECVD integrating with plasma-assisted oxygen oxidation and in-situ doped polysilicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112396.</p><p>Wang Q, Peng H, Gu S, et al <b>High-efficiency n-TOPCon bifacial solar cells with selective poly-Si based passivating contacts.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112458.</p><p>Wen L, Zhao L, Wang G, et al <b>Beyond 25% efficient crystalline silicon heterojunction solar cells with hydrogenated amorphous silicon oxide stacked passivation layers for rear emitter.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112429.</p><p>Wratten A, Pain SL, Yadav A, et al <b>Exploring hafnium oxide's potential for passivating contacts for silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112457.</p><p>Xing H, Liu Z, Yang Z, et al <b>Plasma treatment for chemical SiO</b><sub><b>x</b></sub> <b>enables excellent passivation of p-type polysilicon passivating contact featuring the lowest J<sub>0</sub> of ∼6 fA/cm</b><sup><b>2</b></sup>. <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112354.</p><p>Zhou J, Zhang J, Lv B. <b>Firing behavior of lead-containing and lead-free metallization silver paste for monocrystalline silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112439.</p><p>Zhou Y, Jia C, Lu K, et al <b>Energy-efficient colorful silicon photovoltaic modules driven by transparent-colored radiative cooling.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112459.</p><p>Babics M, Bristow H, Pininti AR, et al <b>Temperature coefficients of perovskite/silicon tandem solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3013–3,015.</p><p>Chiang YH, Frohna K, Salway H, et al <b>Vacuum-deposited wide-bandgap perovskite for all-perovskite tandem solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2728–2,737.</p><p>Chittiboina GV, Singareddy A, Agarwal A, et al <b>Intrinsic degradation-dependent energy yield estimates for perovskite/silicon tandem solar cells under field conditions.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 2927–2,934.</p><p>Xu LJ, Xu FZ, Liu J, et al <b>Bandgap optimization for bifacial tandem solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3114–3,121.</p><p>Wang XL, Ying ZQ, Zheng JM, et al <b>Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2166.</p><p>Wang YR, Lin RX, Wang XY, et al <b>Oxidation-resistant all-perovskite tandem solar cells in substrate configuration.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1819.</p><p>Gayathri RD, Lakshman C, Kim H, et al <b>Multifunctional narrow band gap terpolymer-enabled high-performance dopant-free perovskite and additive-free organic solar cells with long-term stability.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(26): 31514–31,524.</p><p>Guan H, Liao QG, Huang TH, et al <b>Solid additive enables organic solar cells with efficiency up to 18.6%.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(21): 25774–25,782.</p><p>Kaienburg P, Bristow H, Jungbluth A, et al <b>Vacuum-deposited donors for low-voltage-loss nonfullerene organic solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(26): 31684–31,691.</p><p>Zhang L, Yang F, Deng W, et al <b>Organic–inorganic hybrid cathode interlayer for efficient flexible inverted organic solar modules.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(26): 263903.</p><p>Zhou H, Zhang L, Ma XL, et al <b>Approaching 18% efficiency of ternary layer-by-layer polymer solar cells with alloyed acceptors.</b> <i>Chemical Engineering Journal</i> 2023; <b>462</b>: 142327.</p><p>Chen ZH, Yao HF, Wang JW, et al <b>Restrained energetic disorder for high-efficiency organic solar cells via a solid additive.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(6): 2637–2,645.</p><p>Chen ZY, Zhu JT, Yang DB, et al <b>Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(7): 3119–3,127.</p><p>Ma RJ, Jiang XY, Fu JH, et al <b>Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined ex situ and in situ observations.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2316–2,326.</p><p>Huang YZ, Si XD, Wang RH, et al <b>A polymer acceptor with grafted small molecule acceptor units for high-efficiency organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(27): 14768–14,775.</p><p>Gu CT, Zhao Y, Liu B, et al <b>Regioregular polymerized small-molecule acceptors for high-performance all-polymer solar cells.</b> <i>Journal of Materials Chemistry C</i> 2023; <b>11</b>(27): 9082–9,092.</p><p>Li ZX, Jiang CZ, Chen X, et al <b>Side-chain modification of non-fullerene acceptors for organic solar cells with efficiency over 18%.</b> <i>Journal of Materials Chemistry C</i> 2023; <b>11</b>(21): 6920–6,927.</p><p>Wan QP, Seo S, Lee SW, et al <b>High-performance intrinsically stretchable polymer solar cell with record efficiency and stretchability enabled by thymine-functionalized terpolymer.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(22): 11914–11,920.</p><p>Tsao CS, Chuang CM, Cha HC, et al <b>Lab-to-Fab development and long-term greenhouse test of stable flexible semitransparent organic photovoltaic module.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101340.</p><p>An K, Zhong WK, Peng F, et al <b>Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2688.</p><p>Lai X, Chen SY, Gu XY, et al <b>Phenanthroline-carbolong interface suppress chemical interactions with active layer enabling long-time stable organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3571.</p><p>Liu B, Sun HL, Lee JW, et al <b>Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 967.</p><p>Galdino JJB, Vilela OdC, Fraidenraich N, et al <b>Evaluation of front and backside performances of a large surface organic photovoltaic module under bifacial illumination.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112359.</p><p>Bae JH, Jeon HJ, Cho SH, et al <b>Efficiency improvement of dye-sensitized solar cells using Cu,Co/TiO</b><sub><b>2</b></sub> <b>photoelectrodes doped by applying ultrasonic treatment.</b> <i>Applied Surface Science</i> 2023; <b>621</b>: 156823.</p><p>Speranza R, Reina M, Zaccagnini P, et al <b>Laser-induced graphene as a sustainable counter electrode for DSSC enabling flexible self-powered integrated harvesting and storage device for indoor application.</b> <i>Electrochimica Acta</i> 2023; <b>460</b>: 142614.</p><p>Chumwangwapee N, Suksri A, Wongwuttanasatian T. <b>Investigation of bi-colour natural dyes potential for dye sensitized solar cell.</b> <i>Energy Reports</i> 2023; <b>9</b>: 415–421.</p><p>Kaur N, Syed FM, Fina J, et al <b>Ag reflectors: An effective approach to improve light harvesting in dye sensitized solar cells.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 250–253.</p><p>Jagadeesh A, Veerappan G, Devi PS, et al <b>Synergetic effect of TiO</b><sub><b>2</b></sub><b>/ZnO bilayer photoanodes realizing exceptionally high V</b><sub><b>OC</b></sub> <b>for dye-sensitized solar cells under outdoor and indoor illumination.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(27): 14748–14,759.</p><p>Bifari EN, Almeida P, El-Shishtawy RM. <b>Advancing panchromatic effect for efficient sensitization of cyanine and hemicyanine-based dye-sensitized solar cells.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101337.</p><p>He Y, Yue G, Huo J, et al <b>A dye-sensitized solar cells with an efficiency of 10.01% based on the MoP/MoNiP</b><sub><b>2</b></sub><b>@Ti3C</b><sub><b>2</b></sub> <b>composite counter electrode.</b> <i>Materials Today Sustainability</i> 2023; <b>22</b>: 100329.</p><p>Dong JJ, Yan SH, Chen HY, et al <b>Approaching full-scale passivation in perovskite solar cells via valent-variable carbazole cations.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2772–2,780.</p><p>Kedia M, Rai M, Phirke H, et al <b>Light makes right: Laser polishing for surface modification of perovskite solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2603–2,610.</p><p>Li MY, Park SY, Wang JX, et al <b>Nickel-doped graphite and fusible alloy bilayer back electrode for vacuum-free perovskite solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 2940–2,945.</p><p>Martani S, Zhou Y, Poli I, et al <b>Defect engineering to achieve photostable wide bandgap metal halide perovskites.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2801–2,808.</p><p>Zhang X, Qiu WM, Apergi S, et al <b>Minimizing the interface-driven losses in inverted perovskite solar cells and modules.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2532–2,542.</p><p>An MW, Li BL, Chen BW, et al <b>Star-like, dopant-free, corannulene-cored hole transporting materials for efficient inverted perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>470</b>: 144056.</p><p>Lv Y, Wang K, Lan A, et al <b>Low-photovoltage-loss pringting perovskite solar cells in ambient air through ink synergistic engineering.</b> <i>Chemical Engineering Journal</i> 2023; <b>469</b>: 143909.</p><p>Wang R, Altujjar A, Zibouche N, et al <b>Improving the efficiency and stability of perovskite solar cells using pi-conjugated aromatic additives with differing hydrophobicities.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(6): 2646–2,657.</p><p>Jeong MJ, Moon CS, Lee S, et al <b>Boosting radiation of stacked halide layer for perovskite solar cells with efficiency over 25%.</b> <i>Joule</i> 2023; <b>7</b>(1): 112–127.</p><p>Afroz MA, Singh A, Gupta RK, et al <b>Design potential and future prospects of lead-free halide perovskites in photovoltaic devices.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(25): 13133–13,173.</p><p>Kim JH, Kang DH, Lee DN, et al <b>Effect of functional groups in passivating materials on stability and performance of perovskite solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(27): 15014–15,021.</p><p>Duijnstee EA, Gallant BM, Holzhey P, et al <b>Understanding the degradation of methylenediammonium and its role in phase-stabilizing formamidinium lead triiodide.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(18): 10275–10,284.</p><p>Winkless L. <b>Enhancing the stability of perovskite solar cells under stress.</b> <i>Materials Today</i> 2023; <b>64</b>: 8–9.</p><p>Pu XY, Zhao JS, Li YJ, et al <b>Stable NiO</b><sub><b>x</b></sub><b>-based inverted perovskite solar cells achieved by passivation of multifunctional star polymer.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108506.</p><p>Yang Y, Liu L, Li JX, et al <b>Ambient-aging process enables enhanced efficiency for wide-bandgap perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>109</b>: 108288.</p><p>Jiang NR, Zhang HW, Liu YF, et al <b>Transfer-imprinting-assisted growth of 2D/3D perovskite heterojunction for efficient and stable flexible inverted perovskite solar cells.</b> <i>Nano Letters</i> 2023; <b>23</b>(13): 6116–6,123.</p><p>Zhang H, Lee JW, Nasti G, et al <b>Lead immobilization for environmentally sustainable perovskite solar cells.</b> <i>Nature</i> 2023; <b>617</b>(7962): 687–695.</p><p>Wang T, Yang JB, Cao Q, et al <b>Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1342.</p><p>Li CW, Wang XM, Bi EB, et al <b>Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells.</b> <i>Science</i> 2023; <b>379</b>(6633): 690–694.</p><p>Peng W, Mao KT, Cai FC, et al <b>Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact.</b> <i>Science</i> 2023; <b>379</b>(6633): 683–690.</p><p>Zhang S, Ye FY, Wang XY, et al <b>Minimizing buried interfacial defects for efficient inverted perovskite solar cells.</b> <i>Science</i> 2023; <b>380</b>(6643): 404–409.</p><p>Wei H, Li YM, Cui CC, et al <b>Defect suppression for high-efficiency kesterite CZTSSe solar cells: Advances and prospects.</b> <i>Chemical Engineering Journal</i> 2023; <b>462</b>: 142121.</p><p>Scaffidi R, Birant G, Brammertz G, et al <b>Ge-alloyed kesterite thin-film solar cells: previous investigations and current status - a comprehensive review.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(25): 13174–13,194.</p><p>Xiao Q, Kou DX, Zhou WH, et al <b>Defect engineering of solution-processed ZnO:Li window layers towards high-efficiency and low-cost kesterite photovoltaics.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(21): 11161–11,169.</p><p>Zhao XY, Qi YF, Zhou ZJ, et al <b>Regulating charge carrier recombination in Cu</b><sub><b>2</b></sub><b>ZnSn(S,Se)</b><sub><b>4</b></sub> <b>solar cells via cesium treatment: bulk and interface effects.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(21): 11454–11,462.</p><p>Fukuda R, Nishimura T, Yamada A. <b>Experimental and theoretical EBIC analysis for grain boundary and CdS/Cu(In, Ga)Se</b><sub><b>2</b></sub> <b>heterointerface in Cu(In, Ga)Se</b><sub><b>2</b></sub> <b>solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 678–689.</p><p>Wang Y, Wang G, Zhou Y, et al <b>Research progress in doped absorber layer of CdTe solar cells.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>183</b>: 113427.</p><p>Artegiani E, Gasparotto A, Meneghini M, et al <b>How the selenium distribution in CdTe affects the carrier properties of CdSeTe/CdTe solar cells.</b> <i>Solar Energy</i> 2023; <b>260</b>: 11–16.</p><p>Jahandardoost M, Walkons C, Bansal S. <b>Degradation behavior of CIGS solar Cells: A parametric analysis.</b> <i>Solar Energy</i> 2023; <b>260</b>: 61–70.</p><p>Zarerasouli P, Bahador H, Heidarzadeh H. <b>Design of an efficient ultra-thin film Cu(In,Ga)Se</b><sub><b>2</b></sub> <b>solar cell, using plasmonic cluster back reflectors.</b> <i>Solar Energy</i> 2023; <b>261</b>:1–6.</p><p>Han BS, Liu WQ, Duan JH, et al <b>In situ gravimetric probing of copper sulfide formation on the counter electrode for quantum dot sensitized solar cells.</b> <i>Journal of Physical Chemistry C</i> 2023; <b>127</b>(22): 10833–10,844.</p><p>Yuan JF, Tian JJ. <b>Ligand engineering of CsPbI</b><sub><b>3</b></sub> <b>quantum dots for efficient solar cells.</b> <i>Journal of Physical Chemistry C</i> 2023; <b>127</b>(26): 12520–12,527.</p><p>Li LN, Lin Y, Xia YM, et al <b>Fe single atom catalysts promoting polysulfide redox reduction in quantum dot photovoltaics.</b> <i>Nano Letters</i> 2023; <b>23</b>(11): 5123–5,130.</p><p>Wang S, Zhao Q, Hazarika A, et al <b>Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2216.</p><p>Alnami N, Kumar R, Saha S, et al <b>Temperature dependent behavior of sub-monolayer quantum dot based solar cell.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112448.</p><p>Huang C, Yang M. <b>Memory long and short term time series network for ultra-short-term photovoltaic power forecasting.</b> <i>Energy</i> 2023; <b>279</b>: 127961.</p><p>Paulescu M, Blaga R, Dughir C, et al <b>Intra-hour PV power forecasting based on sky imagery.</b> <i>Energy</i> 2023; <b>279</b>: 128135.</p><p>Ahmad M, Zeeshan M, Khan JA. <b>Life cycle multi-objective (geospatial, techno-economic, and environmental) feasibility and potential assessment of utility scale photovoltaic power plants.</b> <i>Energy Conversion and Management</i> 2023; <b>291</b>: 117260.</p><p>Chtita S, Derouich A, Motahhir S, et al <b>A new MPPT design using arithmetic optimization algorithm for PV energy storage systems operating under partial shading conditions.</b> <i>Energy Conversion and Management</i> 2023; <b>289</b>: 117197.</p><p>Keddouda A, Ihaddadene R, Boukhari A, et al <b>Solar photovoltaic power prediction using artificial neural network and multiple regression considering ambient and operating conditions.</b> <i>Energy Conversion and Management</i> 2023; <b>288</b>: 117186.</p><p>Sun YW, Zhu DF, Li Y, et al <b>Spatial modelling the location choice of large-scale solar photovoltaic power plants: Application of interpretable machine learning techniques and the national inventory.</b> <i>Energy Conversion and Management</i> 2023; <b>289</b>: 117198.</p><p>Gyamfi S, Aboagye B, Peprah F, et al <b>Degradation analysis of polycrystalline silicon modules from different manufacturers under the same climatic conditions.</b> <i>Energy Conversion and Management: X</i> 2023; <b>20</b>: 100403.</p><p>Vega-Garita V, Alpizar-Gutierrez V, Alpízar-Castillo J. <b>A practical method for considering shading on photovoltaics systems energy yield.</b> <i>Energy Conversion and Management: X</i> 2023; <b>20</b>: 100412.</p><p>Mehmood A, Ren J, Zhang L. <b>Achieving energy sustainability by using solar PV: System modelling and comprehensive techno-economic-environmental analysis.</b> <i>Energy Strategy Reviews</i> 2023; <b>49</b>: 101126.</p><p>Farag MM, Patel N, Hamid AK, et al <b>An optimized fractional nonlinear synergic controller for maximum power point tracking of photovoltaic array under abrupt irradiance change.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 305–314.</p><p>Mikofski MA, Holmgren WF, Newmiller J, et al <b>Effects of solar resource sampling rate and averaging interval on hourly modeling errors.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 202–207.</p><p>Ahn JB, Jo HB, Ryoo HJ. <b>Real-time DC series arc fault detection based on noise pattern analysis in photovoltaic system.</b> <i>IEEE Transactions on Industrial Electronics</i> 2023; <b>70</b>(10): 10680–10,689.</p><p>Zheng XD, Chao CX, Weng Y, et al <b>High-frequency fault analysis-based pilot protection scheme for a distribution network with high photovoltaic penetration.</b> <i>IEEE Transactions on Smart Grid</i> 2023; <b>14</b>(1): 302–314.</p><p>Harada D, Chinnavornrungsee P, Kittisontirak S, et al <b>Optimization of numerical weather model parameterizations for solar irradiance prediction in the tropics.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: 1056.</p><p>Li J, Zhang Y, Fang H, et al <b>Risk evaluation of photovoltaic power systems: An improved failure mode and effect analysis under uncertainty.</b> <i>Journal of Cleaner Production</i> 2023; <b>414</b>: 137620.</p><p>Dubarry M, Costa N, Matthews D. <b>Data-driven direct diagnosis of Li-ion batteries connected to photovoltaics.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3138.</p><p>Brune B, Ortner I, Eder GC, et al <b>Quantifying the influence of encapsulant and backsheet composition on PV-power and electrical degradation.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 716–728.</p><p>Cavieres R, Salas J, Barraza R, et al <b>Estimation of the impact of natural soiling on solar module operation through image analysis.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 690–699.</p><p>Brenner A, Kahn J, Hirsch T, et al <b>Soiling determination for parabolic trough collectors based on operational data analysis and machine learning.</b> <i>Solar Energy</i> 2023; <b>259</b>: 257–276.</p><p>Zhang L, He Y, Wu H, et al <b>Ultra-short-term multi-step probability interval prediction of photovoltaic power: A framework with time-series-segment feature analysis.</b> <i>Solar Energy</i> 2023; <b>260</b>: 71–82.</p><p>Segbefia OK, Akhtar N, Sætre TO. <b>Moisture induced degradation in field-aged multicrystalline silicon photovoltaic modules.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112407.</p><p>Smestad GP, Anderson C, Cholette ME, et al <b>Variability and associated uncertainty in image analysis for soiling characterization in solar energy systems.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112437.</p><p>Tas MPM, van Sark WGJHM. <b>Experimental repair technique for glass defects of glass–glass photovoltaic modules – A techno-economic analysis.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112397.</p><p>Liu ZG, Guo ZL, Song CC, et al <b>Business model comparison of slum-based PV to realize low-cost and flexible power generation in city-level.</b> <i>Applied Energy</i> 2023; <b>344</b>: 121220.</p><p>Liu DY, Qi ST, Xu TT. <b>In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced?</b> <i>Energy Policy</i> 2023; <b>174</b>: 113451.</p><p>Mazzeo D, Leva S, Matera N, et al <b>A user-friendly and accurate machine learning tool for the evaluation of the worldwide yearly photovoltaic electricity production.</b> <i>Energy Reports</i> 2023; <b>9</b>: 6267–6,294.</p><p>Ajith M, Martínez-Ramón M. <b>Deep learning algorithms for very short term solar irradiance forecasting: A survey.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>182</b>: 113362.</p><p>Liu B, Yang D, Mayer MJ, et al <b>Predictability and forecast skill of solar irradiance over the contiguous United States.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>182</b>: 113359.</p><p>Rodríguez E, Cornejo-Ponce L, Cardemil JM, et al <b>Estimation of one-minute direct normal irradiance using a deep neural network for five climate zones.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>183</b>: 113486.</p><p>Akan T. <b>Can renewable energy mitigate the impacts of inflation and policy interest on climate change?</b> <i>Renewable Energy</i> 2023; <b>214</b>: 255–289.</p><p>Laguarda A, Alonso-Suárez R, Abal G. <b>Improved estimation of hourly direct normal solar irradiation (DNI) using geostationary satellite visible channel images over moderate albedo areas.</b> <i>Solar Energy</i> 2023; <b>259</b>: 30–40.</p><p>Libra M, Mrázek D, Tyukhov I, et al <b>Reduced real lifetime of PV panels – Economic consequences.</b> <i>Solar Energy</i> 2023; <b>259</b>: 229–234.</p><p>Liao Q, Li S, Xi F, et al <b>High-performance silicon carbon anodes based on value-added recycling strategy of end-of-life photovoltaic modules.</b> <i>Energy</i> 2023; <b>281</b>: 128345.</p><p>Sasai M, Yamashita T, Inoue D. <b>Development of low-temperature thermal decomposition recycling technology from photovoltaic modules to flat glass applications.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: 1043.</p><p>Li J, Yan S, Li Y, et al <b>Recycling Si in waste crystalline silicon photovoltaic panels after mechanical crushing by electrostatic separation.</b> <i>Journal of Cleaner Production</i> 2023; <b>415</b>: 137908.</p><p>Wang X, Xue J, Hou X. <b>Barriers analysis to Chinese waste photovoltaic module recycling under the background of “double carbon”.</b> <i>Renewable Energy</i> 2023; <b>214</b>: 39–54.</p><p>Tembo PM, Subramanian V. <b>Current trends in silicon-based photovoltaic recycling: A technology, assessment, and policy review.</b> <i>Solar Energy</i> 2023; <b>259</b>: 137–150.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 10","pages":"1042-1047"},"PeriodicalIF":8.0000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3735","citationCount":"0","resultStr":"{\"title\":\"PHOTOVOLTAICS LITERATURE SURVEY (No. 185)\",\"authors\":\"Ziv Hameiri\",\"doi\":\"10.1002/pip.3735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Parikh N, Akin S, Kalam A, et al <b>Probing the low-frequency response of impedance spectroscopy of halide perovskite single crystals using machine learning.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(23): 27801–27,808.</p><p>Du HQ, Jiang Y, Rothmann MU, et al <b>Transmission electron microscopy studies of organic–inorganic hybrid perovskites: Advances, challenges, and prospects.</b> <i>Applied Physics Reviews</i> 2023; <b>10</b>(2): 021314.</p><p>El Ainaoui K, Zaimi M, Assaid EM. <b>Innovative approaches to extract double-diode model physical parameters of a PV module serving outdoors under real-world conditions.</b> <i>Energy Conversion and Management</i> 2023; <b>292</b>: 117365.</p><p>Korovin A, Vasilev A, Egorov F, et al <b>Anomaly detection in electroluminescence images of heterojunction solar cells.</b> <i>Solar Energy</i> 2023; <b>259</b>: 130–136.</p><p>Panigrahi J, Pandey A, Bhattacharya S, et al <b>Impedance spectroscopy of amorphous/crystalline silicon heterojunction solar cells under dark and illumination.</b> <i>Solar Energy</i> 2023; <b>259</b>: 165–173.</p><p>Dwivedi P, Weber JW, Lee Chin R, et al <b>Deep learning method for enhancing luminescence image resolution.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112357.</p><p>Vallerotto G, Martín F, Macías J, et al <b>Collimated solar simulator for curved PV modules characterization.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112418.</p><p>Zhang HH, Zhang LP, Liu WZ, et al <b>Influence of intrinsic amorphous silicon passivation layer on the dark-state stability of SHJ cells.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(18): 182101.</p><p>Hammann B, Assmann N, Weiser PM, et al <b>The impact of different hydrogen configurations on light- and elevated-temperature- induced degradation.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 224–235.</p><p>Rocha D, Alves J, Lopes V, et al <b>Multidefect detection tool for large-scale PV plants: Segmentation and classification.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 291–295.</p><p>Hao B, Song YM, Jiang CH, et al <b>Comparing single-, double- and triple-layer anti-reflection coatings for ultra-low reflectance in silicon heterojunction solar cells.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>(6): 061002.</p><p>Geng Q, Wang Z, Liu Z, et al <b>Construction of V</b><sub><b>2</b></sub><b>O</b><sub><b>x</b></sub><b>/Si heterojunction and carrier-assisted collection for high-efficiency silicon solar cells.</b> <i>Materials Today Energy</i> 2023; <b>34</b>: 101317.</p><p>Liu WZ, Liu YJ, Yang ZQ, et al <b>Flexible solar cells based on foldable silicon wafers with blunted edges.</b> <i>Nature</i> 2023; <b>617</b>(7962): 717.</p><p>Arriaga Arruti O, Virtuani A, Ballif C. <b>Long-term performance and reliability of silicon heterojunction solar modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 664–677.</p><p>Lohmüller E, Baliozian P, Gutmann L, et al <b>TOPCon shingle solar cells: Thermal laser separation and passivated edge technology.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 729–737.</p><p>Lin N, Yang Z, Du H, et al <b>Excellent surface passivation of p-type TOPCon enabled by ozone-gas oxidation with a single-sided saturation current density of ∼ 4.5 fA/cm</b><sup><b>2</b></sup>. <i>Solar Energy</i> 2023; <b>259</b>: 348–355.</p><p>Abdul Fattah TO, Markevich VP, Gomes D, et al <b>Interactions of hydrogen atoms with boron and gallium in silicon crystals co-doped with phosphorus and acceptors.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112447.</p><p>Chen H, Zhang J, Hu D, et al <b>Improving quality of cast monocrystalline Si ingot with seed crystal strips and graphite soft felt.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112416.</p><p>Chen N, Tune D, Buchholz F, et al <b>Stable passivation of cut edges in encapsulated n-type silicon solar cells using Nafion polymer.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112401.</p><p>Du H, Wang T, Liu W, et al <b>24.18% efficiency TOPCon solar cells enabled by super hydrophilic carbon-doped polysilicon films combined with plated metal fingers.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112393.</p><p>Feng B, Liu Y, Chen W, et al <b>Differently shaped Ag crystallites and four current transport paths at sintered Ag/Si interface of crystalline silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112381.</p><p>Hammann B, Aßmann N, Schön J, et al <b>Understanding the impact of the cooling ramp of the fast-firing process on light- and elevated-temperature-induced degradation.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112462.</p><p>Linke J, Hoß J, Buchholz F, et al <b>Influence of the annealing temperature of (n) poly-Si/SiO</b><sub><b>x</b></sub> <b>passivating contacts on their firing stability.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112415.</p><p>Ma S, Liao B, Qiao FY, et al <b>24.7% industrial tunnel oxide passivated contact solar cells prepared through tube PECVD integrating with plasma-assisted oxygen oxidation and in-situ doped polysilicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112396.</p><p>Wang Q, Peng H, Gu S, et al <b>High-efficiency n-TOPCon bifacial solar cells with selective poly-Si based passivating contacts.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112458.</p><p>Wen L, Zhao L, Wang G, et al <b>Beyond 25% efficient crystalline silicon heterojunction solar cells with hydrogenated amorphous silicon oxide stacked passivation layers for rear emitter.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112429.</p><p>Wratten A, Pain SL, Yadav A, et al <b>Exploring hafnium oxide's potential for passivating contacts for silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112457.</p><p>Xing H, Liu Z, Yang Z, et al <b>Plasma treatment for chemical SiO</b><sub><b>x</b></sub> <b>enables excellent passivation of p-type polysilicon passivating contact featuring the lowest J<sub>0</sub> of ∼6 fA/cm</b><sup><b>2</b></sup>. <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112354.</p><p>Zhou J, Zhang J, Lv B. <b>Firing behavior of lead-containing and lead-free metallization silver paste for monocrystalline silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112439.</p><p>Zhou Y, Jia C, Lu K, et al <b>Energy-efficient colorful silicon photovoltaic modules driven by transparent-colored radiative cooling.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112459.</p><p>Babics M, Bristow H, Pininti AR, et al <b>Temperature coefficients of perovskite/silicon tandem solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3013–3,015.</p><p>Chiang YH, Frohna K, Salway H, et al <b>Vacuum-deposited wide-bandgap perovskite for all-perovskite tandem solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2728–2,737.</p><p>Chittiboina GV, Singareddy A, Agarwal A, et al <b>Intrinsic degradation-dependent energy yield estimates for perovskite/silicon tandem solar cells under field conditions.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 2927–2,934.</p><p>Xu LJ, Xu FZ, Liu J, et al <b>Bandgap optimization for bifacial tandem solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3114–3,121.</p><p>Wang XL, Ying ZQ, Zheng JM, et al <b>Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2166.</p><p>Wang YR, Lin RX, Wang XY, et al <b>Oxidation-resistant all-perovskite tandem solar cells in substrate configuration.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1819.</p><p>Gayathri RD, Lakshman C, Kim H, et al <b>Multifunctional narrow band gap terpolymer-enabled high-performance dopant-free perovskite and additive-free organic solar cells with long-term stability.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(26): 31514–31,524.</p><p>Guan H, Liao QG, Huang TH, et al <b>Solid additive enables organic solar cells with efficiency up to 18.6%.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(21): 25774–25,782.</p><p>Kaienburg P, Bristow H, Jungbluth A, et al <b>Vacuum-deposited donors for low-voltage-loss nonfullerene organic solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(26): 31684–31,691.</p><p>Zhang L, Yang F, Deng W, et al <b>Organic–inorganic hybrid cathode interlayer for efficient flexible inverted organic solar modules.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(26): 263903.</p><p>Zhou H, Zhang L, Ma XL, et al <b>Approaching 18% efficiency of ternary layer-by-layer polymer solar cells with alloyed acceptors.</b> <i>Chemical Engineering Journal</i> 2023; <b>462</b>: 142327.</p><p>Chen ZH, Yao HF, Wang JW, et al <b>Restrained energetic disorder for high-efficiency organic solar cells via a solid additive.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(6): 2637–2,645.</p><p>Chen ZY, Zhu JT, Yang DB, et al <b>Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(7): 3119–3,127.</p><p>Ma RJ, Jiang XY, Fu JH, et al <b>Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined ex situ and in situ observations.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2316–2,326.</p><p>Huang YZ, Si XD, Wang RH, et al <b>A polymer acceptor with grafted small molecule acceptor units for high-efficiency organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(27): 14768–14,775.</p><p>Gu CT, Zhao Y, Liu B, et al <b>Regioregular polymerized small-molecule acceptors for high-performance all-polymer solar cells.</b> <i>Journal of Materials Chemistry C</i> 2023; <b>11</b>(27): 9082–9,092.</p><p>Li ZX, Jiang CZ, Chen X, et al <b>Side-chain modification of non-fullerene acceptors for organic solar cells with efficiency over 18%.</b> <i>Journal of Materials Chemistry C</i> 2023; <b>11</b>(21): 6920–6,927.</p><p>Wan QP, Seo S, Lee SW, et al <b>High-performance intrinsically stretchable polymer solar cell with record efficiency and stretchability enabled by thymine-functionalized terpolymer.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(22): 11914–11,920.</p><p>Tsao CS, Chuang CM, Cha HC, et al <b>Lab-to-Fab development and long-term greenhouse test of stable flexible semitransparent organic photovoltaic module.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101340.</p><p>An K, Zhong WK, Peng F, et al <b>Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2688.</p><p>Lai X, Chen SY, Gu XY, et al <b>Phenanthroline-carbolong interface suppress chemical interactions with active layer enabling long-time stable organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3571.</p><p>Liu B, Sun HL, Lee JW, et al <b>Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 967.</p><p>Galdino JJB, Vilela OdC, Fraidenraich N, et al <b>Evaluation of front and backside performances of a large surface organic photovoltaic module under bifacial illumination.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112359.</p><p>Bae JH, Jeon HJ, Cho SH, et al <b>Efficiency improvement of dye-sensitized solar cells using Cu,Co/TiO</b><sub><b>2</b></sub> <b>photoelectrodes doped by applying ultrasonic treatment.</b> <i>Applied Surface Science</i> 2023; <b>621</b>: 156823.</p><p>Speranza R, Reina M, Zaccagnini P, et al <b>Laser-induced graphene as a sustainable counter electrode for DSSC enabling flexible self-powered integrated harvesting and storage device for indoor application.</b> <i>Electrochimica Acta</i> 2023; <b>460</b>: 142614.</p><p>Chumwangwapee N, Suksri A, Wongwuttanasatian T. <b>Investigation of bi-colour natural dyes potential for dye sensitized solar cell.</b> <i>Energy Reports</i> 2023; <b>9</b>: 415–421.</p><p>Kaur N, Syed FM, Fina J, et al <b>Ag reflectors: An effective approach to improve light harvesting in dye sensitized solar cells.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 250–253.</p><p>Jagadeesh A, Veerappan G, Devi PS, et al <b>Synergetic effect of TiO</b><sub><b>2</b></sub><b>/ZnO bilayer photoanodes realizing exceptionally high V</b><sub><b>OC</b></sub> <b>for dye-sensitized solar cells under outdoor and indoor illumination.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(27): 14748–14,759.</p><p>Bifari EN, Almeida P, El-Shishtawy RM. <b>Advancing panchromatic effect for efficient sensitization of cyanine and hemicyanine-based dye-sensitized solar cells.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101337.</p><p>He Y, Yue G, Huo J, et al <b>A dye-sensitized solar cells with an efficiency of 10.01% based on the MoP/MoNiP</b><sub><b>2</b></sub><b>@Ti3C</b><sub><b>2</b></sub> <b>composite counter electrode.</b> <i>Materials Today Sustainability</i> 2023; <b>22</b>: 100329.</p><p>Dong JJ, Yan SH, Chen HY, et al <b>Approaching full-scale passivation in perovskite solar cells via valent-variable carbazole cations.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2772–2,780.</p><p>Kedia M, Rai M, Phirke H, et al <b>Light makes right: Laser polishing for surface modification of perovskite solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2603–2,610.</p><p>Li MY, Park SY, Wang JX, et al <b>Nickel-doped graphite and fusible alloy bilayer back electrode for vacuum-free perovskite solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 2940–2,945.</p><p>Martani S, Zhou Y, Poli I, et al <b>Defect engineering to achieve photostable wide bandgap metal halide perovskites.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2801–2,808.</p><p>Zhang X, Qiu WM, Apergi S, et al <b>Minimizing the interface-driven losses in inverted perovskite solar cells and modules.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(6): 2532–2,542.</p><p>An MW, Li BL, Chen BW, et al <b>Star-like, dopant-free, corannulene-cored hole transporting materials for efficient inverted perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>470</b>: 144056.</p><p>Lv Y, Wang K, Lan A, et al <b>Low-photovoltage-loss pringting perovskite solar cells in ambient air through ink synergistic engineering.</b> <i>Chemical Engineering Journal</i> 2023; <b>469</b>: 143909.</p><p>Wang R, Altujjar A, Zibouche N, et al <b>Improving the efficiency and stability of perovskite solar cells using pi-conjugated aromatic additives with differing hydrophobicities.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(6): 2646–2,657.</p><p>Jeong MJ, Moon CS, Lee S, et al <b>Boosting radiation of stacked halide layer for perovskite solar cells with efficiency over 25%.</b> <i>Joule</i> 2023; <b>7</b>(1): 112–127.</p><p>Afroz MA, Singh A, Gupta RK, et al <b>Design potential and future prospects of lead-free halide perovskites in photovoltaic devices.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(25): 13133–13,173.</p><p>Kim JH, Kang DH, Lee DN, et al <b>Effect of functional groups in passivating materials on stability and performance of perovskite solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(27): 15014–15,021.</p><p>Duijnstee EA, Gallant BM, Holzhey P, et al <b>Understanding the degradation of methylenediammonium and its role in phase-stabilizing formamidinium lead triiodide.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(18): 10275–10,284.</p><p>Winkless L. <b>Enhancing the stability of perovskite solar cells under stress.</b> <i>Materials Today</i> 2023; <b>64</b>: 8–9.</p><p>Pu XY, Zhao JS, Li YJ, et al <b>Stable NiO</b><sub><b>x</b></sub><b>-based inverted perovskite solar cells achieved by passivation of multifunctional star polymer.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108506.</p><p>Yang Y, Liu L, Li JX, et al <b>Ambient-aging process enables enhanced efficiency for wide-bandgap perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>109</b>: 108288.</p><p>Jiang NR, Zhang HW, Liu YF, et al <b>Transfer-imprinting-assisted growth of 2D/3D perovskite heterojunction for efficient and stable flexible inverted perovskite solar cells.</b> <i>Nano Letters</i> 2023; <b>23</b>(13): 6116–6,123.</p><p>Zhang H, Lee JW, Nasti G, et al <b>Lead immobilization for environmentally sustainable perovskite solar cells.</b> <i>Nature</i> 2023; <b>617</b>(7962): 687–695.</p><p>Wang T, Yang JB, Cao Q, et al <b>Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1342.</p><p>Li CW, Wang XM, Bi EB, et al <b>Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells.</b> <i>Science</i> 2023; <b>379</b>(6633): 690–694.</p><p>Peng W, Mao KT, Cai FC, et al <b>Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact.</b> <i>Science</i> 2023; <b>379</b>(6633): 683–690.</p><p>Zhang S, Ye FY, Wang XY, et al <b>Minimizing buried interfacial defects for efficient inverted perovskite solar cells.</b> <i>Science</i> 2023; <b>380</b>(6643): 404–409.</p><p>Wei H, Li YM, Cui CC, et al <b>Defect suppression for high-efficiency kesterite CZTSSe solar cells: Advances and prospects.</b> <i>Chemical Engineering Journal</i> 2023; <b>462</b>: 142121.</p><p>Scaffidi R, Birant G, Brammertz G, et al <b>Ge-alloyed kesterite thin-film solar cells: previous investigations and current status - a comprehensive review.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(25): 13174–13,194.</p><p>Xiao Q, Kou DX, Zhou WH, et al <b>Defect engineering of solution-processed ZnO:Li window layers towards high-efficiency and low-cost kesterite photovoltaics.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(21): 11161–11,169.</p><p>Zhao XY, Qi YF, Zhou ZJ, et al <b>Regulating charge carrier recombination in Cu</b><sub><b>2</b></sub><b>ZnSn(S,Se)</b><sub><b>4</b></sub> <b>solar cells via cesium treatment: bulk and interface effects.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(21): 11454–11,462.</p><p>Fukuda R, Nishimura T, Yamada A. <b>Experimental and theoretical EBIC analysis for grain boundary and CdS/Cu(In, Ga)Se</b><sub><b>2</b></sub> <b>heterointerface in Cu(In, Ga)Se</b><sub><b>2</b></sub> <b>solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 678–689.</p><p>Wang Y, Wang G, Zhou Y, et al <b>Research progress in doped absorber layer of CdTe solar cells.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>183</b>: 113427.</p><p>Artegiani E, Gasparotto A, Meneghini M, et al <b>How the selenium distribution in CdTe affects the carrier properties of CdSeTe/CdTe solar cells.</b> <i>Solar Energy</i> 2023; <b>260</b>: 11–16.</p><p>Jahandardoost M, Walkons C, Bansal S. <b>Degradation behavior of CIGS solar Cells: A parametric analysis.</b> <i>Solar Energy</i> 2023; <b>260</b>: 61–70.</p><p>Zarerasouli P, Bahador H, Heidarzadeh H. <b>Design of an efficient ultra-thin film Cu(In,Ga)Se</b><sub><b>2</b></sub> <b>solar cell, using plasmonic cluster back reflectors.</b> <i>Solar Energy</i> 2023; <b>261</b>:1–6.</p><p>Han BS, Liu WQ, Duan JH, et al <b>In situ gravimetric probing of copper sulfide formation on the counter electrode for quantum dot sensitized solar cells.</b> <i>Journal of Physical Chemistry C</i> 2023; <b>127</b>(22): 10833–10,844.</p><p>Yuan JF, Tian JJ. <b>Ligand engineering of CsPbI</b><sub><b>3</b></sub> <b>quantum dots for efficient solar cells.</b> <i>Journal of Physical Chemistry C</i> 2023; <b>127</b>(26): 12520–12,527.</p><p>Li LN, Lin Y, Xia YM, et al <b>Fe single atom catalysts promoting polysulfide redox reduction in quantum dot photovoltaics.</b> <i>Nano Letters</i> 2023; <b>23</b>(11): 5123–5,130.</p><p>Wang S, Zhao Q, Hazarika A, et al <b>Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2216.</p><p>Alnami N, Kumar R, Saha S, et al <b>Temperature dependent behavior of sub-monolayer quantum dot based solar cell.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112448.</p><p>Huang C, Yang M. <b>Memory long and short term time series network for ultra-short-term photovoltaic power forecasting.</b> <i>Energy</i> 2023; <b>279</b>: 127961.</p><p>Paulescu M, Blaga R, Dughir C, et al <b>Intra-hour PV power forecasting based on sky imagery.</b> <i>Energy</i> 2023; <b>279</b>: 128135.</p><p>Ahmad M, Zeeshan M, Khan JA. <b>Life cycle multi-objective (geospatial, techno-economic, and environmental) feasibility and potential assessment of utility scale photovoltaic power plants.</b> <i>Energy Conversion and Management</i> 2023; <b>291</b>: 117260.</p><p>Chtita S, Derouich A, Motahhir S, et al <b>A new MPPT design using arithmetic optimization algorithm for PV energy storage systems operating under partial shading conditions.</b> <i>Energy Conversion and Management</i> 2023; <b>289</b>: 117197.</p><p>Keddouda A, Ihaddadene R, Boukhari A, et al <b>Solar photovoltaic power prediction using artificial neural network and multiple regression considering ambient and operating conditions.</b> <i>Energy Conversion and Management</i> 2023; <b>288</b>: 117186.</p><p>Sun YW, Zhu DF, Li Y, et al <b>Spatial modelling the location choice of large-scale solar photovoltaic power plants: Application of interpretable machine learning techniques and the national inventory.</b> <i>Energy Conversion and Management</i> 2023; <b>289</b>: 117198.</p><p>Gyamfi S, Aboagye B, Peprah F, et al <b>Degradation analysis of polycrystalline silicon modules from different manufacturers under the same climatic conditions.</b> <i>Energy Conversion and Management: X</i> 2023; <b>20</b>: 100403.</p><p>Vega-Garita V, Alpizar-Gutierrez V, Alpízar-Castillo J. <b>A practical method for considering shading on photovoltaics systems energy yield.</b> <i>Energy Conversion and Management: X</i> 2023; <b>20</b>: 100412.</p><p>Mehmood A, Ren J, Zhang L. <b>Achieving energy sustainability by using solar PV: System modelling and comprehensive techno-economic-environmental analysis.</b> <i>Energy Strategy Reviews</i> 2023; <b>49</b>: 101126.</p><p>Farag MM, Patel N, Hamid AK, et al <b>An optimized fractional nonlinear synergic controller for maximum power point tracking of photovoltaic array under abrupt irradiance change.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 305–314.</p><p>Mikofski MA, Holmgren WF, Newmiller J, et al <b>Effects of solar resource sampling rate and averaging interval on hourly modeling errors.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(2): 202–207.</p><p>Ahn JB, Jo HB, Ryoo HJ. <b>Real-time DC series arc fault detection based on noise pattern analysis in photovoltaic system.</b> <i>IEEE Transactions on Industrial Electronics</i> 2023; <b>70</b>(10): 10680–10,689.</p><p>Zheng XD, Chao CX, Weng Y, et al <b>High-frequency fault analysis-based pilot protection scheme for a distribution network with high photovoltaic penetration.</b> <i>IEEE Transactions on Smart Grid</i> 2023; <b>14</b>(1): 302–314.</p><p>Harada D, Chinnavornrungsee P, Kittisontirak S, et al <b>Optimization of numerical weather model parameterizations for solar irradiance prediction in the tropics.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: 1056.</p><p>Li J, Zhang Y, Fang H, et al <b>Risk evaluation of photovoltaic power systems: An improved failure mode and effect analysis under uncertainty.</b> <i>Journal of Cleaner Production</i> 2023; <b>414</b>: 137620.</p><p>Dubarry M, Costa N, Matthews D. <b>Data-driven direct diagnosis of Li-ion batteries connected to photovoltaics.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3138.</p><p>Brune B, Ortner I, Eder GC, et al <b>Quantifying the influence of encapsulant and backsheet composition on PV-power and electrical degradation.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 716–728.</p><p>Cavieres R, Salas J, Barraza R, et al <b>Estimation of the impact of natural soiling on solar module operation through image analysis.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(7): 690–699.</p><p>Brenner A, Kahn J, Hirsch T, et al <b>Soiling determination for parabolic trough collectors based on operational data analysis and machine learning.</b> <i>Solar Energy</i> 2023; <b>259</b>: 257–276.</p><p>Zhang L, He Y, Wu H, et al <b>Ultra-short-term multi-step probability interval prediction of photovoltaic power: A framework with time-series-segment feature analysis.</b> <i>Solar Energy</i> 2023; <b>260</b>: 71–82.</p><p>Segbefia OK, Akhtar N, Sætre TO. <b>Moisture induced degradation in field-aged multicrystalline silicon photovoltaic modules.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>258</b>: 112407.</p><p>Smestad GP, Anderson C, Cholette ME, et al <b>Variability and associated uncertainty in image analysis for soiling characterization in solar energy systems.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>259</b>: 112437.</p><p>Tas MPM, van Sark WGJHM. <b>Experimental repair technique for glass defects of glass–glass photovoltaic modules – A techno-economic analysis.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>257</b>: 112397.</p><p>Liu ZG, Guo ZL, Song CC, et al <b>Business model comparison of slum-based PV to realize low-cost and flexible power generation in city-level.</b> <i>Applied Energy</i> 2023; <b>344</b>: 121220.</p><p>Liu DY, Qi ST, Xu TT. <b>In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced?</b> <i>Energy Policy</i> 2023; <b>174</b>: 113451.</p><p>Mazzeo D, Leva S, Matera N, et al <b>A user-friendly and accurate machine learning tool for the evaluation of the worldwide yearly photovoltaic electricity production.</b> <i>Energy Reports</i> 2023; <b>9</b>: 6267–6,294.</p><p>Ajith M, Martínez-Ramón M. <b>Deep learning algorithms for very short term solar irradiance forecasting: A survey.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>182</b>: 113362.</p><p>Liu B, Yang D, Mayer MJ, et al <b>Predictability and forecast skill of solar irradiance over the contiguous United States.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>182</b>: 113359.</p><p>Rodríguez E, Cornejo-Ponce L, Cardemil JM, et al <b>Estimation of one-minute direct normal irradiance using a deep neural network for five climate zones.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>183</b>: 113486.</p><p>Akan T. <b>Can renewable energy mitigate the impacts of inflation and policy interest on climate change?</b> <i>Renewable Energy</i> 2023; <b>214</b>: 255–289.</p><p>Laguarda A, Alonso-Suárez R, Abal G. <b>Improved estimation of hourly direct normal solar irradiation (DNI) using geostationary satellite visible channel images over moderate albedo areas.</b> <i>Solar Energy</i> 2023; <b>259</b>: 30–40.</p><p>Libra M, Mrázek D, Tyukhov I, et al <b>Reduced real lifetime of PV panels – Economic consequences.</b> <i>Solar Energy</i> 2023; <b>259</b>: 229–234.</p><p>Liao Q, Li S, Xi F, et al <b>High-performance silicon carbon anodes based on value-added recycling strategy of end-of-life photovoltaic modules.</b> <i>Energy</i> 2023; <b>281</b>: 128345.</p><p>Sasai M, Yamashita T, Inoue D. <b>Development of low-temperature thermal decomposition recycling technology from photovoltaic modules to flat glass applications.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: 1043.</p><p>Li J, Yan S, Li Y, et al <b>Recycling Si in waste crystalline silicon photovoltaic panels after mechanical crushing by electrostatic separation.</b> <i>Journal of Cleaner Production</i> 2023; <b>415</b>: 137908.</p><p>Wang X, Xue J, Hou X. <b>Barriers analysis to Chinese waste photovoltaic module recycling under the background of “double carbon”.</b> <i>Renewable Energy</i> 2023; <b>214</b>: 39–54.</p><p>Tembo PM, Subramanian V. <b>Current trends in silicon-based photovoltaic recycling: A technology, assessment, and policy review.</b> <i>Solar Energy</i> 2023; <b>259</b>: 137–150.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"31 10\",\"pages\":\"1042-1047\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3735\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3735\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3735","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了帮助读者了解该领域的最新情况,每期的《光伏进展》都将包含与其目标和范围最相关的最近发表的期刊文章列表。这份名单来自范围极其广泛的期刊,包括IEEE光伏杂志、太阳能材料和太阳能电池、可再生能源、可再生和可持续能源评论、应用物理杂志和应用物理快报。为了帮助读者,我们将该列表分为几个大类,但请注意,这些分类并不严格。还要注意的是,被列入名单并不代表论文的质量得到认可。如果你有任何建议,请发邮件给Ziv Hameiri: [email protected]。Parikh N, Akin S, Kalam A,等。利用机器学习探测卤化物钙钛矿单晶阻抗谱的低频响应。ac应用材料与接口2023;15(23): 27801 - 27808。杜海清,蒋勇,Rothmann MU,等。有机-无机杂化钙钛矿的透射电镜研究进展、挑战与展望。应用物理评论2023;10(2): 021314。El Ainaoui K, Zaimi M, Assaid EM.基于双二极管模型的户外光伏组件物理参数提取方法。能源转换与管理2023;292: 117365。张建军,张建军,张建军,等。异质结太阳能电池电致发光图像的异常检测。太阳能2023;259: 130 - 136。潘尼拉希,潘迪A, Bhattacharya S,等。非晶/晶体硅异质结太阳能电池的阻抗谱分析。太阳能2023;259: 165 - 173。Dwivedi P, Weber JW, Lee Chin R,等。一种增强发光图像分辨率的深度学习方法。太阳能材料和太阳能电池2023;257: 112357。张志强,Martín F, Macías J,等。弯曲光伏组件的准直太阳模拟器。太阳能材料和太阳能电池2023;258: 112418。张海红,张丽萍,刘文忠,等。非晶硅钝化层对SHJ电池暗态稳定性的影响。应用物理快报2023;122(18): 182101。李建军,李建军,李建军,等。不同氢配置对高温和光照诱导降解的影响。光电工程学报(英文版);13(2): 224 - 235。李建军,张建军,张建军,等。大型光伏电站多缺陷检测方法研究。光电工程学报(英文版);13(2): 291 - 295。郝斌,宋彦明,蒋长春,等。硅异质结太阳能电池超低反射率增透膜的单层、双层和三层增透膜比较。日本应用物理学报(英文版);62(6): 061002。耿强,王忠,刘忠,等。高效硅太阳能电池v2o /Si异质结的构建及载流子辅助收集。材料今日能源2023;34: 101317。刘文忠,刘玉军,杨志强,等。基于钝边可折叠硅片的柔性太阳能电池。自然2023;617(7962): 717。刘建军,刘建军,刘建军,等。硅异质结太阳能组件的长期性能和可靠性研究。光伏技术进展:研究与应用2023;31日(7):664 - 677。刘建军,刘建军,李建军,等。热激光分离技术在太阳能电池中的应用。光伏技术进展:研究与应用2023;31日(7):729 - 737。林宁,杨忠,杜华,等。单侧饱和电流密度为~ 4.5 fA/cm2的臭氧-气体氧化p型TOPCon实现了优异的表面钝化。太阳能2023;259: 348 - 355。Abdul Fattah TO, Markevich VP, Gomes D,等。磷和受体共掺杂硅晶体中氢原子与硼和镓的相互作用。太阳能材料和太阳能电池2023;259: 112447。陈华,张杰,胡东,等。用晶条和石墨软毡提高单晶硅铸锭质量。太阳能材料和太阳能电池2023;258: 112416。陈宁,Tune D, Buchholz F,等。nion聚合物封装N型硅太阳能电池的边缘稳定钝化。太阳能材料和太阳能电池2023;258: 112401。杜辉,王涛,刘伟,等。超亲水性碳掺杂多晶硅薄膜与镀金属指相结合实现了24.18%效率的TOPCon太阳能电池。太阳能材料和太阳能电池2023;257: 112393。冯斌,刘勇,陈伟,等。不同形状的Ag晶体和烧结Ag/Si界面上的四种电流输运路径。太阳能材料和太阳能电池2023;257: 112381。王晓明,王晓明,王晓明,等。高温和高温诱导下的高温降解过程的研究进展。太阳能材料和太阳能电池2023;259: 112462。 Linke J, Hoß J, Buchholz F,等。(n)多晶硅/SiOx钝化触点退火温度对其烧成稳定性的影响。太阳能材料和太阳能电池2023;258: 112415。马松,廖斌,乔云飞,等。等离子体辅助氧氧化与原位掺杂多晶硅相结合的管状PECVD法制备24.7%工业隧道氧化钝化接触太阳能电池。太阳能材料和太阳能电池2023;257: 112396。王强,彭辉,顾山,等。选择性多晶硅钝化触点的高效n-TOPCon双面太阳能电池。太阳能材料和太阳能电池2023;259: 112458。温磊,赵磊,王刚,等。后发射极氢化非晶氧化硅堆叠钝化层的超25%高效晶体硅异质结太阳能电池。太阳能材料和太阳能电池2023;258: 112429。Wratten A, Pain SL, Yadav A,等。探索氧化铪钝化硅太阳能电池触点的潜力。太阳能材料和太阳能电池2023;259: 112457。邢辉,刘震,杨震,等。化学SiOx的等离子体处理使p型多晶硅钝化接触具有优异的钝化性能,其J0最低为~ 6 fA/cm2。太阳能材料和太阳能电池2023;257: 112354。周军,张军,吕波。单晶硅太阳能电池用含铅和无铅金属化银浆的烧成行为。太阳能材料和太阳能电池2023;259: 112439。周勇,贾超,陆凯,等。透明彩色辐射冷却驱动的高效彩色硅光伏组件。太阳能材料和太阳能电池2023;259: 112459。王晓东,王晓东,王晓东,等。钙钛矿/硅串联太阳能电池的温度系数研究。Acs Energy Letters 2023;8(7): 3013 - 3015。蒋玉华,陈国强,陈国强,等。全钙钛矿串联太阳能电池的真空沉积研究。Acs Energy Letters 2023;八(6):2728 - 2737。李建军,李建军,李建军,等。钙钛矿/硅串联太阳能电池的性能研究。Acs Energy Letters 2023;8(7): 2927 - 2934。徐丽娟,徐福忠,刘健,等。双面串联太阳能电池带隙优化。Acs Energy Letters 2023;8(7): 3114 - 3121。王晓龙,应志强,郑建民,等。长链阴离子表面活性剂制备钙钛矿/硅串联结构的研究进展。自然通讯2023;14(1): 2166。王艳艳,林荣祥,王学祥,等。衬底结构的抗氧化全钙钛矿串联太阳能电池。自然通讯2023;14(1): 1819。李建军,李建军,李建军,等。高性能无掺杂钙钛矿有机太阳能电池的研究进展。ac应用材料与接口2023;15(26): 31514 - 31524。关辉,廖庆国,黄太涛,等。固体添加剂使有机太阳能电池效率高达18.6%。ac应用材料与接口2023;15(21): 25774 - 25782。李建军,李建军,李建军,等。真空沉积法制备低电压损耗非富勒烯有机太阳能电池。ac应用材料与接口2023;15(26): 31684 - 31691。张磊,杨峰,邓伟,等。高效柔性倒置有机太阳能组件的有机-无机杂化阴极夹层。应用物理快报2023;122(26): 263903。周海,张磊,马晓龙,等。含合金受体的三元聚合物太阳能电池效率接近18%。化学工程学报(英文版);462: 142327。陈振华,姚海峰,王建伟,等。固体添加剂对高效有机太阳能电池能量紊乱的抑制。能源与环境科学2023;16(6): 2637 - 2645。陈志勇,朱金涛,杨德宝,等。非富勒烯客体受体的异构化策略及其在稳定有机太阳能电池中的应用,效率超过19%。能源与环境科学2023;16(7): 3119 - 3127。马荣军,蒋学祥,付建华,等。通过非原位和原位联合观测揭示溶剂对高效有机太阳能电池薄膜形态的潜在影响。能源与环境科学2023;16(5): 2316 - 2326。黄永忠,司晓东,王荣荣,等。高效有机太阳能电池的小分子接枝聚合物受体。材料工程学报(英文版);11(27): 14768 - 14775。顾春涛,赵毅,刘斌,等。高性能全聚合物太阳能电池的区域规则聚合小分子受体。材料化学学报(英文版);11(27): 9082 - 9092。李志祥,蒋朝忠,陈鑫,等。有机太阳能电池非富勒烯受体侧链修饰效率超过18%。材料化学学报(英文版);11(21): 6920 - 6927。万启平,徐世生,李世文,等。胸腺嘧啶功能化三元共聚物的高性能内在可拉伸聚合物太阳能电池。 美国化学学会杂志2023;145(22): 11914 - 11920。Tsao CS, chucm, Cha HC,等。稳定柔性半透明有机光伏组件的实验室到工厂开发和长期温室测试。材料今日能源2023;36: 101340。安凯,钟文凯,彭峰,等。控制非富勒烯受体的形态以实现长期稳定的有机太阳能电池。自然通讯2023;14(1): 2688。赖欣,陈世义,顾学祥,等。菲罗啉-碳龙界面抑制活性层的化学相互作用,使有机太阳能电池长时间稳定。自然通讯2023;14(1): 3571。刘斌,孙海龙,李建伟,等。基于一锅聚合的多组分光活性层制备高效稳定的有机太阳能电池。自然通讯2023;14(1): 967。Galdino JJB, Vilela OdC, Fraidenraich N,等。双面照明下大型表面有机光伏组件前后性能评价。太阳能材料和太阳能电池2023;257: 112359。裴建辉,全海军,赵世生,等。超声处理下Cu,Co/TiO2光电极对染料敏化太阳能电池效率的提高。应用表面科学2023;621: 156823。Speranza R, Reina M, Zaccagnini P,等人。激光诱导石墨烯作为DSSC的可持续对电极,实现室内应用的柔性自供电集成收集和存储装置。电化学学报;2023;460: 142614。张建军,张建军,张建军,等。染料敏化太阳能电池的研究进展。2023年能源报告;9: 415 - 421。张建军,张建军,张建军,等。Ag反射器在染料敏化太阳能电池中的应用。光电工程学报(英文版);13(2): 250 - 253。Jagadeesh A, Veerappan G, Devi PS,等。TiO2/ZnO双层光阳极在室外和室内光照下实现染料敏化太阳能电池超高VOC的协同效应。材料工程学报(英文版);11(27): 14748 - 14759。陈建军,陈建军,陈建军。推进全色效应,以高效敏化花青碱和半花青碱为基础的染料敏化太阳能电池。材料今日能源2023;36: 101337。何勇,岳刚,霍军,等。基于MoP/MoNiP2@Ti3C2复合对电极的效率为10.01%的染料敏化太阳能电池。材料今日可持续发展2023;22日:100329。董建军,严松,陈海燕,等。钙钛矿太阳能电池的变价咔唑阳离子全面钝化研究。Acs Energy Letters 2023;八(6):2772 - 2780。Kedia M, Rai M, Phirke H, et al Light makes right:钙钛矿太阳能电池表面改性的激光抛光。Acs Energy Letters 2023;八(6):2603 - 2610。李美明,朴世祥,王建新,等。无真空钙钛矿太阳能电池中掺镍石墨和可熔合金双层背电极。Acs Energy Letters 2023;8(7): 2940 - 2945。马塔尼,周勇,波利,等。制备光稳定宽禁带金属卤化物钙钛矿的缺陷工程。Acs Energy Letters 2023;八(6):2801 - 2808。张欣,邱文明,Apergi S,等。反向钙钛矿太阳能电池和组件的界面驱动损耗最小化。Acs Energy Letters 2023;八(6):2532 - 2542。安毫瓦,李宝玲,陈宝文,等。高效倒置钙钛矿太阳能电池的星形、无掺杂、颗粒烯核空穴传输材料。化学工程学报(英文版);470: 144056。吕勇,王凯,兰安,等。油墨协同工程技术在环境空气中印刷低光伏损耗钙钛矿太阳能电池。化学工程学报(英文版);469: 143909。Wang R, Altujjar A, Zibouche N,等。不同疏水性的π共轭芳香添加剂提高钙钛矿太阳能电池的效率和稳定性。能源与环境科学2023;16(6): 2646 - 2657。Jeong MJ, Moon CS, Lee S,等。效率超过25%的钙钛矿太阳能电池堆叠卤化物层增强辐射。焦耳2023;7(1): 112 - 127。Afroz MA, Singh A, Gupta RK,等。无铅卤化物钙钛矿在光伏器件中的设计潜力和未来前景。材料工程学报(英文版);11(25): 13133 - 13173。金建辉,姜德华,李东,等。钝化材料中官能团对钙钛矿太阳能电池稳定性和性能的影响。材料工程学报(英文版);11(27): 15014 - 15021。Duijnstee EA, Gallant BM, Holzhey P,等。亚甲基二铵的降解及其在稳定相的甲脒型三碘化铅中的作用。美国化学学会杂志2023;145(18): 10275 - 10284。提高钙钛矿太阳能电池在应力下的稳定性。今日材料2023;64: 8 - 9。濮学勇,赵建军,李玉军,等。多功能星形聚合物钝化制备稳定的niox基倒置钙钛矿太阳能电池。纳米能源2023;112: 108506。 杨勇,刘磊,李建新,等。环境老化工艺提高了宽带隙钙钛矿太阳能电池的效率。纳米能源2023;109: 108288。蒋日新,张宏伟,刘云峰,等。转移印迹辅助生长二维/三维钙钛矿异质结制备高效稳定柔性倒钙钛矿太阳能电池。Nano Letters 2023;23日(13):6116 - 6123。张宏,李建伟,Nasti G,等。环境可持续钙钛矿太阳能电池的铅固定化研究。自然2023;617(7962): 687 - 695。王涛,杨建军,曹强,等。室温无损封装自交联氟硅聚合物制备湿热稳定可持续钙钛矿太阳能电池。自然通讯2023;14(1): 1342。李长文,王晓明,毕宝波,等。稳定高效的倒钙钛矿太阳能电池刘易斯碱分子的合理设计。科学2023;379(6633): 690 - 694。彭伟,毛克坤,蔡春芳,等。多孔绝缘体接触钙钛矿太阳能电池的非辐射复合。科学2023;379(6633): 683 - 690。张松,叶飞飞,王学祥,等。高效倒置钙钛矿太阳能电池中埋藏界面缺陷的最小化。科学2023;380(6643): 404 - 409。魏宏,李彦明,崔春春,等。高效kesterite CZTSSe太阳能电池的缺陷抑制研究进展与展望。化学工程学报(英文版);462: 142121。Scaffidi R, Birant G, Brammertz G,等。锗合金kesterite薄膜太阳能电池的研究与现状综述。材料工程学报(英文版);11(25): 13174 - 13194。肖强,寇晓东,周文辉,等。溶液法制得ZnO:Li窗口层的缺陷工程研究。材料工程学报(英文版);11(21): 11161 - 11169。赵学勇,齐云峰,周志军,等。铯处理对Cu2ZnSn(S,Se)4太阳能电池载流子重组的调控:体积效应和界面效应。材料工程学报(英文版);11(21): 11454 - 11462。田建军,李建军,李建军,等。Cu(In, Ga)Se2太阳能电池中cd /Cu(In, Ga)Se2异质界面的EBIC实验与理论分析。光伏技术进展:研究与应用2023;31日(7):678 - 689。王勇,王刚,周勇,等。CdTe太阳能电池掺杂吸收层的研究进展。《2023年可再生和可持续能源评论》;183: 113427。Artegiani E, Gasparotto A, Meneghini M,等。硒在CdTe中的分布对CdSeTe/CdTe太阳能电池载流子性能的影响。太阳能2023;260: 16。李建军,李建军,李建军,等。太阳能电池性能的研究进展。太阳能2023;260: 61 - 70。zareerasouli P, Bahador H, Heidarzadeh H.一种高效超薄膜Cu(In,Ga)Se2太阳能电池的设计。太阳能2023;261:1-6。韩宝宝,刘文强,段建华,等。量子点敏化太阳能电池对电极上硫化铜形成的原位重力探测。物理化学学报(英文版);127(22): 10833 - 10844。袁建峰,田建军。高效太阳能电池用CsPbI3量子点配体工程。物理化学学报(英文版);127(26): 12520 - 12527。李磊,林勇,夏彦明,等。铁单原子催化剂促进量子点光伏中多硫化物氧化还原。Nano Letters 2023;23日(11):5123 - 5130。王松,赵强,Hazarika A,等。钙钛矿量子点对A位阳离子和表面配体耐热性的影响。自然通讯2023;14(1): 2216。张建军,张建军,张建军,等。基于亚单层量子点的太阳能电池温度特性研究。太阳能材料和太阳能电池2023;259: 112448。黄晨,杨敏。记忆长短期时间序列网络的超短期光伏发电预测。能源2023;279: 127961。Paulescu M, Blaga R, Dughir C,等。基于天空图像的小时内光伏发电预测。能源2023;279: 128135。Ahmad M, Zeeshan M, Khan JA。公用事业规模光伏电站生命周期多目标(地理空间、技术经济和环境)可行性和潜力评估。能源转换与管理2023;291: 117260。Chtita S, Derouich A, Motahhir S,等。基于算法优化的部分遮阳条件下光伏储能系统MPPT设计。能源转换与管理2023;289: 117197。Keddouda A, Ihaddadene R, Boukhari A,等。考虑环境和运行条件的人工神经网络和多元回归预测太阳能光伏发电功率。能源转换与管理2023;288: 117186。孙艳伟,朱峰,李勇,等。大型太阳能光伏电站选址的空间建模:基于可解释机器学习技术和国家库存的应用。能源转换与管理2023;289: 117198。 Gyamfi S, Aboagye B, Peprah F,等。不同厂家多晶硅组件在相同气候条件下的降解分析。能源转换与管理:2023年;20: 100403。Vega-Garita V, Alpizar-Gutierrez V, Alpízar-Castillo J.考虑遮阳对光伏系统能量产出的实用方法。能源转换与管理:2023年;20: 100412。任军,张磊。太阳能光伏发电系统的系统建模及综合技术经济环境分析。《能源战略评论2023》;49: 101126。张建军,张建军,张建军,等。辐照度突变下光伏阵列最大功率点跟踪的优化分数阶非线性协同控制器。光电工程学报(英文版);13(2): 305 - 314。Mikofski MA, Holmgren WF, Newmiller J,等。太阳资源采样率和平均间隔对逐时模拟误差的影响。光电工程学报(英文版);13(2): 202 - 207。安杰比,赵海斌,柳海杰。基于噪声模式分析的光伏系统直流串联电弧故障实时检测。IEEE工业电子学报(英文版);70(10): 10680 - 10689。郑晓东,晁彩霞,翁勇,等。基于高频故障分析的高光伏渗透配电网中试保护方案。IEEE Transactions on Smart Grid 2023;14(1): 302 - 314。陈春华,陈春华,陈春华,等。热带地区太阳辐照度预报的数值模式参数化优化。日本应用物理学报(英文版);62: 1056。李军,张勇,方宏,等。不确定条件下光伏发电系统风险评估:改进的失效模式及影响分析。清洁生产学报(英文版);414: 137620。杜巴里M,科斯塔N,马修斯D.数据驱动的锂离子电池直接诊断与光伏连接。自然通讯2023;14(1): 3138。Brune B, Ortner I, Eder GC,等。封装剂和背板组成对光伏功率和电退化的影响。光伏技术进展:研究与应用2023;31日(7):716 - 728。Cavieres R, Salas J, Barraza R,等。利用图像分析估算自然污染对太阳能组件运行的影响。光伏技术进展:研究与应用2023;31日(7):690 - 699。张建军,张建军,张建军,等。基于运行数据分析和机器学习的抛物槽式集热器污染检测。太阳能2023;259: 257 - 276。张磊,何勇,吴华,等。光伏发电超短期多步概率区间预测:基于时间序列特征分析的框架。太阳能2023;260: 71 - 82。Segbefia OK, Akhtar N, Sætre TO。现场老化多晶硅光伏组件中的水分诱导降解。太阳能材料和太阳能电池2023;258: 112407。Smestad GP, Anderson C, Cholette ME,等。太阳能系统污染特征图像分析的可变性和相关不确定性。太阳能材料和太阳能电池2023;259: 112437。塔斯MPM,范萨克WGJHM。玻璃-玻璃光伏组件玻璃缺陷的实验修复技术-技术经济分析。太阳能材料和太阳能电池2023;257: 112397。刘志刚,郭志林,宋春春,等。贫民窟光伏实现城市低成本柔性发电的商业模式比较。应用能源2023;344: 121220。刘达元,祁世涛,徐廷涛。后补贴时代:在补贴减少的情况下,如何鼓励单纯消费者转变为产消者?2023年能源政策;174: 113451。Mazzeo D, Leva S, Matera N,等。一种用户友好且准确的机器学习工具,用于评估全球年度光伏发电量。2023年能源报告;9: 6267 - 6294。[M], Martínez-Ramón M.极短期太阳辐照度预测的深度学习算法。《2023年可再生和可持续能源评论》;182: 113362。刘波,杨东,Mayer MJ,等。美国周边地区太阳辐照度的可预测性和预报技巧。《2023年可再生和可持续能源评论》;182: 113359。Rodríguez E, cornejoponce L, Cardemil JM,等。基于深度神经网络的5个气候带1分钟直接正常辐射估算。《2023年可再生和可持续能源评论》;183: 113486。可再生能源能减轻通货膨胀和政策利益对气候变化的影响吗?2023年可再生能源;214: 255 - 289。Laguarda A, Alonso-Suárez R, Abal G.利用地球静止卫星可见光通道图像在中等反照率区域改进的每小时直接正常太阳辐照(DNI)估算。太阳能2023;259: 30 - 40。Libra M, Mrázek D, Tyukhov I,等。降低光伏板的实际寿命-经济后果。太阳能2023;259: 229 - 234。 廖强,李生,奚峰,等。基于报废光伏组件增值回收策略的高性能硅碳阳极。能源2023;281: 128345。王志强,王志强,王志强,等。低温热分解回收技术的研究进展。日本应用物理学报(英文版);62: 1043。李军,严生,李勇,等。静电分离机械破碎后废旧晶硅光伏板中的硅的回收利用。清洁生产学报(英文版);415: 137908。王欣,薛健,侯欣。“双碳”背景下中国废旧光伏组件回收的障碍分析。2023年可再生能源;214: 39-54。Tembo PM, Subramanian V.硅基光伏回收的当前趋势:技术,评估和政策审查。太阳能2023;259: 137 - 150。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PHOTOVOLTAICS LITERATURE SURVEY (No. 185)

In order to help readers stay up-to-date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at [email protected].

Parikh N, Akin S, Kalam A, et al Probing the low-frequency response of impedance spectroscopy of halide perovskite single crystals using machine learning. Acs Applied Materials and Interfaces 2023; 15(23): 27801–27,808.

Du HQ, Jiang Y, Rothmann MU, et al Transmission electron microscopy studies of organic–inorganic hybrid perovskites: Advances, challenges, and prospects. Applied Physics Reviews 2023; 10(2): 021314.

El Ainaoui K, Zaimi M, Assaid EM. Innovative approaches to extract double-diode model physical parameters of a PV module serving outdoors under real-world conditions. Energy Conversion and Management 2023; 292: 117365.

Korovin A, Vasilev A, Egorov F, et al Anomaly detection in electroluminescence images of heterojunction solar cells. Solar Energy 2023; 259: 130–136.

Panigrahi J, Pandey A, Bhattacharya S, et al Impedance spectroscopy of amorphous/crystalline silicon heterojunction solar cells under dark and illumination. Solar Energy 2023; 259: 165–173.

Dwivedi P, Weber JW, Lee Chin R, et al Deep learning method for enhancing luminescence image resolution. Solar Energy Materials and Solar Cells 2023; 257: 112357.

Vallerotto G, Martín F, Macías J, et al Collimated solar simulator for curved PV modules characterization. Solar Energy Materials and Solar Cells 2023; 258: 112418.

Zhang HH, Zhang LP, Liu WZ, et al Influence of intrinsic amorphous silicon passivation layer on the dark-state stability of SHJ cells. Applied Physics Letters 2023; 122(18): 182101.

Hammann B, Assmann N, Weiser PM, et al The impact of different hydrogen configurations on light- and elevated-temperature- induced degradation. IEEE Journal of Photovoltaics 2023; 13(2): 224–235.

Rocha D, Alves J, Lopes V, et al Multidefect detection tool for large-scale PV plants: Segmentation and classification. IEEE Journal of Photovoltaics 2023; 13(2): 291–295.

Hao B, Song YM, Jiang CH, et al Comparing single-, double- and triple-layer anti-reflection coatings for ultra-low reflectance in silicon heterojunction solar cells. Japanese Journal of Applied Physics 2023; 62(6): 061002.

Geng Q, Wang Z, Liu Z, et al Construction of V2Ox/Si heterojunction and carrier-assisted collection for high-efficiency silicon solar cells. Materials Today Energy 2023; 34: 101317.

Liu WZ, Liu YJ, Yang ZQ, et al Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 2023; 617(7962): 717.

Arriaga Arruti O, Virtuani A, Ballif C. Long-term performance and reliability of silicon heterojunction solar modules. Progress in Photovoltaics: Research and Applications 2023; 31(7): 664–677.

Lohmüller E, Baliozian P, Gutmann L, et al TOPCon shingle solar cells: Thermal laser separation and passivated edge technology. Progress in Photovoltaics: Research and Applications 2023; 31(7): 729–737.

Lin N, Yang Z, Du H, et al Excellent surface passivation of p-type TOPCon enabled by ozone-gas oxidation with a single-sided saturation current density of ∼ 4.5 fA/cm2. Solar Energy 2023; 259: 348–355.

Abdul Fattah TO, Markevich VP, Gomes D, et al Interactions of hydrogen atoms with boron and gallium in silicon crystals co-doped with phosphorus and acceptors. Solar Energy Materials and Solar Cells 2023; 259: 112447.

Chen H, Zhang J, Hu D, et al Improving quality of cast monocrystalline Si ingot with seed crystal strips and graphite soft felt. Solar Energy Materials and Solar Cells 2023; 258: 112416.

Chen N, Tune D, Buchholz F, et al Stable passivation of cut edges in encapsulated n-type silicon solar cells using Nafion polymer. Solar Energy Materials and Solar Cells 2023; 258: 112401.

Du H, Wang T, Liu W, et al 24.18% efficiency TOPCon solar cells enabled by super hydrophilic carbon-doped polysilicon films combined with plated metal fingers. Solar Energy Materials and Solar Cells 2023; 257: 112393.

Feng B, Liu Y, Chen W, et al Differently shaped Ag crystallites and four current transport paths at sintered Ag/Si interface of crystalline silicon solar cells. Solar Energy Materials and Solar Cells 2023; 257: 112381.

Hammann B, Aßmann N, Schön J, et al Understanding the impact of the cooling ramp of the fast-firing process on light- and elevated-temperature-induced degradation. Solar Energy Materials and Solar Cells 2023; 259: 112462.

Linke J, Hoß J, Buchholz F, et al Influence of the annealing temperature of (n) poly-Si/SiOx passivating contacts on their firing stability. Solar Energy Materials and Solar Cells 2023; 258: 112415.

Ma S, Liao B, Qiao FY, et al 24.7% industrial tunnel oxide passivated contact solar cells prepared through tube PECVD integrating with plasma-assisted oxygen oxidation and in-situ doped polysilicon. Solar Energy Materials and Solar Cells 2023; 257: 112396.

Wang Q, Peng H, Gu S, et al High-efficiency n-TOPCon bifacial solar cells with selective poly-Si based passivating contacts. Solar Energy Materials and Solar Cells 2023; 259: 112458.

Wen L, Zhao L, Wang G, et al Beyond 25% efficient crystalline silicon heterojunction solar cells with hydrogenated amorphous silicon oxide stacked passivation layers for rear emitter. Solar Energy Materials and Solar Cells 2023; 258: 112429.

Wratten A, Pain SL, Yadav A, et al Exploring hafnium oxide's potential for passivating contacts for silicon solar cells. Solar Energy Materials and Solar Cells 2023; 259: 112457.

Xing H, Liu Z, Yang Z, et al Plasma treatment for chemical SiOx enables excellent passivation of p-type polysilicon passivating contact featuring the lowest J0 of ∼6 fA/cm2. Solar Energy Materials and Solar Cells 2023; 257: 112354.

Zhou J, Zhang J, Lv B. Firing behavior of lead-containing and lead-free metallization silver paste for monocrystalline silicon solar cells. Solar Energy Materials and Solar Cells 2023; 259: 112439.

Zhou Y, Jia C, Lu K, et al Energy-efficient colorful silicon photovoltaic modules driven by transparent-colored radiative cooling. Solar Energy Materials and Solar Cells 2023; 259: 112459.

Babics M, Bristow H, Pininti AR, et al Temperature coefficients of perovskite/silicon tandem solar cells. Acs Energy Letters 2023; 8(7): 3013–3,015.

Chiang YH, Frohna K, Salway H, et al Vacuum-deposited wide-bandgap perovskite for all-perovskite tandem solar cells. Acs Energy Letters 2023; 8(6): 2728–2,737.

Chittiboina GV, Singareddy A, Agarwal A, et al Intrinsic degradation-dependent energy yield estimates for perovskite/silicon tandem solar cells under field conditions. Acs Energy Letters 2023; 8(7): 2927–2,934.

Xu LJ, Xu FZ, Liu J, et al Bandgap optimization for bifacial tandem solar cells. Acs Energy Letters 2023; 8(7): 3114–3,121.

Wang XL, Ying ZQ, Zheng JM, et al Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion. Nature Communications 2023; 14(1): 2166.

Wang YR, Lin RX, Wang XY, et al Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nature Communications 2023; 14(1): 1819.

Gayathri RD, Lakshman C, Kim H, et al Multifunctional narrow band gap terpolymer-enabled high-performance dopant-free perovskite and additive-free organic solar cells with long-term stability. Acs Applied Materials and Interfaces 2023; 15(26): 31514–31,524.

Guan H, Liao QG, Huang TH, et al Solid additive enables organic solar cells with efficiency up to 18.6%. Acs Applied Materials and Interfaces 2023; 15(21): 25774–25,782.

Kaienburg P, Bristow H, Jungbluth A, et al Vacuum-deposited donors for low-voltage-loss nonfullerene organic solar cells. Acs Applied Materials and Interfaces 2023; 15(26): 31684–31,691.

Zhang L, Yang F, Deng W, et al Organic–inorganic hybrid cathode interlayer for efficient flexible inverted organic solar modules. Applied Physics Letters 2023; 122(26): 263903.

Zhou H, Zhang L, Ma XL, et al Approaching 18% efficiency of ternary layer-by-layer polymer solar cells with alloyed acceptors. Chemical Engineering Journal 2023; 462: 142327.

Chen ZH, Yao HF, Wang JW, et al Restrained energetic disorder for high-efficiency organic solar cells via a solid additive. Energy and Environmental Science 2023; 16(6): 2637–2,645.

Chen ZY, Zhu JT, Yang DB, et al Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy and Environmental Science 2023; 16(7): 3119–3,127.

Ma RJ, Jiang XY, Fu JH, et al Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined ex situ and in situ observations. Energy and Environmental Science 2023; 16(5): 2316–2,326.

Huang YZ, Si XD, Wang RH, et al A polymer acceptor with grafted small molecule acceptor units for high-efficiency organic solar cells. Journal of Materials Chemistry A 2023; 11(27): 14768–14,775.

Gu CT, Zhao Y, Liu B, et al Regioregular polymerized small-molecule acceptors for high-performance all-polymer solar cells. Journal of Materials Chemistry C 2023; 11(27): 9082–9,092.

Li ZX, Jiang CZ, Chen X, et al Side-chain modification of non-fullerene acceptors for organic solar cells with efficiency over 18%. Journal of Materials Chemistry C 2023; 11(21): 6920–6,927.

Wan QP, Seo S, Lee SW, et al High-performance intrinsically stretchable polymer solar cell with record efficiency and stretchability enabled by thymine-functionalized terpolymer. Journal of the American Chemical Society 2023; 145(22): 11914–11,920.

Tsao CS, Chuang CM, Cha HC, et al Lab-to-Fab development and long-term greenhouse test of stable flexible semitransparent organic photovoltaic module. Materials Today Energy 2023; 36: 101340.

An K, Zhong WK, Peng F, et al Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells. Nature Communications 2023; 14(1): 2688.

Lai X, Chen SY, Gu XY, et al Phenanthroline-carbolong interface suppress chemical interactions with active layer enabling long-time stable organic solar cells. Nature Communications 2023; 14(1): 3571.

Liu B, Sun HL, Lee JW, et al Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nature Communications 2023; 14(1): 967.

Galdino JJB, Vilela OdC, Fraidenraich N, et al Evaluation of front and backside performances of a large surface organic photovoltaic module under bifacial illumination. Solar Energy Materials and Solar Cells 2023; 257: 112359.

Bae JH, Jeon HJ, Cho SH, et al Efficiency improvement of dye-sensitized solar cells using Cu,Co/TiO2 photoelectrodes doped by applying ultrasonic treatment. Applied Surface Science 2023; 621: 156823.

Speranza R, Reina M, Zaccagnini P, et al Laser-induced graphene as a sustainable counter electrode for DSSC enabling flexible self-powered integrated harvesting and storage device for indoor application. Electrochimica Acta 2023; 460: 142614.

Chumwangwapee N, Suksri A, Wongwuttanasatian T. Investigation of bi-colour natural dyes potential for dye sensitized solar cell. Energy Reports 2023; 9: 415–421.

Kaur N, Syed FM, Fina J, et al Ag reflectors: An effective approach to improve light harvesting in dye sensitized solar cells. IEEE Journal of Photovoltaics 2023; 13(2): 250–253.

Jagadeesh A, Veerappan G, Devi PS, et al Synergetic effect of TiO2/ZnO bilayer photoanodes realizing exceptionally high VOC for dye-sensitized solar cells under outdoor and indoor illumination. Journal of Materials Chemistry A 2023; 11(27): 14748–14,759.

Bifari EN, Almeida P, El-Shishtawy RM. Advancing panchromatic effect for efficient sensitization of cyanine and hemicyanine-based dye-sensitized solar cells. Materials Today Energy 2023; 36: 101337.

He Y, Yue G, Huo J, et al A dye-sensitized solar cells with an efficiency of 10.01% based on the MoP/MoNiP2@Ti3C2 composite counter electrode. Materials Today Sustainability 2023; 22: 100329.

Dong JJ, Yan SH, Chen HY, et al Approaching full-scale passivation in perovskite solar cells via valent-variable carbazole cations. Acs Energy Letters 2023; 8(6): 2772–2,780.

Kedia M, Rai M, Phirke H, et al Light makes right: Laser polishing for surface modification of perovskite solar cells. Acs Energy Letters 2023; 8(6): 2603–2,610.

Li MY, Park SY, Wang JX, et al Nickel-doped graphite and fusible alloy bilayer back electrode for vacuum-free perovskite solar cells. Acs Energy Letters 2023; 8(7): 2940–2,945.

Martani S, Zhou Y, Poli I, et al Defect engineering to achieve photostable wide bandgap metal halide perovskites. Acs Energy Letters 2023; 8(6): 2801–2,808.

Zhang X, Qiu WM, Apergi S, et al Minimizing the interface-driven losses in inverted perovskite solar cells and modules. Acs Energy Letters 2023; 8(6): 2532–2,542.

An MW, Li BL, Chen BW, et al Star-like, dopant-free, corannulene-cored hole transporting materials for efficient inverted perovskite solar cells. Chemical Engineering Journal 2023; 470: 144056.

Lv Y, Wang K, Lan A, et al Low-photovoltage-loss pringting perovskite solar cells in ambient air through ink synergistic engineering. Chemical Engineering Journal 2023; 469: 143909.

Wang R, Altujjar A, Zibouche N, et al Improving the efficiency and stability of perovskite solar cells using pi-conjugated aromatic additives with differing hydrophobicities. Energy and Environmental Science 2023; 16(6): 2646–2,657.

Jeong MJ, Moon CS, Lee S, et al Boosting radiation of stacked halide layer for perovskite solar cells with efficiency over 25%. Joule 2023; 7(1): 112–127.

Afroz MA, Singh A, Gupta RK, et al Design potential and future prospects of lead-free halide perovskites in photovoltaic devices. Journal of Materials Chemistry A 2023; 11(25): 13133–13,173.

Kim JH, Kang DH, Lee DN, et al Effect of functional groups in passivating materials on stability and performance of perovskite solar cells. Journal of Materials Chemistry A 2023; 11(27): 15014–15,021.

Duijnstee EA, Gallant BM, Holzhey P, et al Understanding the degradation of methylenediammonium and its role in phase-stabilizing formamidinium lead triiodide. Journal of the American Chemical Society 2023; 145(18): 10275–10,284.

Winkless L. Enhancing the stability of perovskite solar cells under stress. Materials Today 2023; 64: 8–9.

Pu XY, Zhao JS, Li YJ, et al Stable NiOx-based inverted perovskite solar cells achieved by passivation of multifunctional star polymer. Nano Energy 2023; 112: 108506.

Yang Y, Liu L, Li JX, et al Ambient-aging process enables enhanced efficiency for wide-bandgap perovskite solar cells. Nano Energy 2023; 109: 108288.

Jiang NR, Zhang HW, Liu YF, et al Transfer-imprinting-assisted growth of 2D/3D perovskite heterojunction for efficient and stable flexible inverted perovskite solar cells. Nano Letters 2023; 23(13): 6116–6,123.

Zhang H, Lee JW, Nasti G, et al Lead immobilization for environmentally sustainable perovskite solar cells. Nature 2023; 617(7962): 687–695.

Wang T, Yang JB, Cao Q, et al Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells. Nature Communications 2023; 14(1): 1342.

Li CW, Wang XM, Bi EB, et al Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 2023; 379(6633): 690–694.

Peng W, Mao KT, Cai FC, et al Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 2023; 379(6633): 683–690.

Zhang S, Ye FY, Wang XY, et al Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 2023; 380(6643): 404–409.

Wei H, Li YM, Cui CC, et al Defect suppression for high-efficiency kesterite CZTSSe solar cells: Advances and prospects. Chemical Engineering Journal 2023; 462: 142121.

Scaffidi R, Birant G, Brammertz G, et al Ge-alloyed kesterite thin-film solar cells: previous investigations and current status - a comprehensive review. Journal of Materials Chemistry A 2023; 11(25): 13174–13,194.

Xiao Q, Kou DX, Zhou WH, et al Defect engineering of solution-processed ZnO:Li window layers towards high-efficiency and low-cost kesterite photovoltaics. Journal of Materials Chemistry A 2023; 11(21): 11161–11,169.

Zhao XY, Qi YF, Zhou ZJ, et al Regulating charge carrier recombination in Cu2ZnSn(S,Se)4 solar cells via cesium treatment: bulk and interface effects. Journal of Materials Chemistry A 2023; 11(21): 11454–11,462.

Fukuda R, Nishimura T, Yamada A. Experimental and theoretical EBIC analysis for grain boundary and CdS/Cu(In, Ga)Se2 heterointerface in Cu(In, Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(7): 678–689.

Wang Y, Wang G, Zhou Y, et al Research progress in doped absorber layer of CdTe solar cells. Renewable and Sustainable Energy Reviews 2023; 183: 113427.

Artegiani E, Gasparotto A, Meneghini M, et al How the selenium distribution in CdTe affects the carrier properties of CdSeTe/CdTe solar cells. Solar Energy 2023; 260: 11–16.

Jahandardoost M, Walkons C, Bansal S. Degradation behavior of CIGS solar Cells: A parametric analysis. Solar Energy 2023; 260: 61–70.

Zarerasouli P, Bahador H, Heidarzadeh H. Design of an efficient ultra-thin film Cu(In,Ga)Se2 solar cell, using plasmonic cluster back reflectors. Solar Energy 2023; 261:1–6.

Han BS, Liu WQ, Duan JH, et al In situ gravimetric probing of copper sulfide formation on the counter electrode for quantum dot sensitized solar cells. Journal of Physical Chemistry C 2023; 127(22): 10833–10,844.

Yuan JF, Tian JJ. Ligand engineering of CsPbI3 quantum dots for efficient solar cells. Journal of Physical Chemistry C 2023; 127(26): 12520–12,527.

Li LN, Lin Y, Xia YM, et al Fe single atom catalysts promoting polysulfide redox reduction in quantum dot photovoltaics. Nano Letters 2023; 23(11): 5123–5,130.

Wang S, Zhao Q, Hazarika A, et al Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand. Nature Communications 2023; 14(1): 2216.

Alnami N, Kumar R, Saha S, et al Temperature dependent behavior of sub-monolayer quantum dot based solar cell. Solar Energy Materials and Solar Cells 2023; 259: 112448.

Huang C, Yang M. Memory long and short term time series network for ultra-short-term photovoltaic power forecasting. Energy 2023; 279: 127961.

Paulescu M, Blaga R, Dughir C, et al Intra-hour PV power forecasting based on sky imagery. Energy 2023; 279: 128135.

Ahmad M, Zeeshan M, Khan JA. Life cycle multi-objective (geospatial, techno-economic, and environmental) feasibility and potential assessment of utility scale photovoltaic power plants. Energy Conversion and Management 2023; 291: 117260.

Chtita S, Derouich A, Motahhir S, et al A new MPPT design using arithmetic optimization algorithm for PV energy storage systems operating under partial shading conditions. Energy Conversion and Management 2023; 289: 117197.

Keddouda A, Ihaddadene R, Boukhari A, et al Solar photovoltaic power prediction using artificial neural network and multiple regression considering ambient and operating conditions. Energy Conversion and Management 2023; 288: 117186.

Sun YW, Zhu DF, Li Y, et al Spatial modelling the location choice of large-scale solar photovoltaic power plants: Application of interpretable machine learning techniques and the national inventory. Energy Conversion and Management 2023; 289: 117198.

Gyamfi S, Aboagye B, Peprah F, et al Degradation analysis of polycrystalline silicon modules from different manufacturers under the same climatic conditions. Energy Conversion and Management: X 2023; 20: 100403.

Vega-Garita V, Alpizar-Gutierrez V, Alpízar-Castillo J. A practical method for considering shading on photovoltaics systems energy yield. Energy Conversion and Management: X 2023; 20: 100412.

Mehmood A, Ren J, Zhang L. Achieving energy sustainability by using solar PV: System modelling and comprehensive techno-economic-environmental analysis. Energy Strategy Reviews 2023; 49: 101126.

Farag MM, Patel N, Hamid AK, et al An optimized fractional nonlinear synergic controller for maximum power point tracking of photovoltaic array under abrupt irradiance change. IEEE Journal of Photovoltaics 2023; 13(2): 305–314.

Mikofski MA, Holmgren WF, Newmiller J, et al Effects of solar resource sampling rate and averaging interval on hourly modeling errors. IEEE Journal of Photovoltaics 2023; 13(2): 202–207.

Ahn JB, Jo HB, Ryoo HJ. Real-time DC series arc fault detection based on noise pattern analysis in photovoltaic system. IEEE Transactions on Industrial Electronics 2023; 70(10): 10680–10,689.

Zheng XD, Chao CX, Weng Y, et al High-frequency fault analysis-based pilot protection scheme for a distribution network with high photovoltaic penetration. IEEE Transactions on Smart Grid 2023; 14(1): 302–314.

Harada D, Chinnavornrungsee P, Kittisontirak S, et al Optimization of numerical weather model parameterizations for solar irradiance prediction in the tropics. Japanese Journal of Applied Physics 2023; 62: 1056.

Li J, Zhang Y, Fang H, et al Risk evaluation of photovoltaic power systems: An improved failure mode and effect analysis under uncertainty. Journal of Cleaner Production 2023; 414: 137620.

Dubarry M, Costa N, Matthews D. Data-driven direct diagnosis of Li-ion batteries connected to photovoltaics. Nature Communications 2023; 14(1): 3138.

Brune B, Ortner I, Eder GC, et al Quantifying the influence of encapsulant and backsheet composition on PV-power and electrical degradation. Progress in Photovoltaics: Research and Applications 2023; 31(7): 716–728.

Cavieres R, Salas J, Barraza R, et al Estimation of the impact of natural soiling on solar module operation through image analysis. Progress in Photovoltaics: Research and Applications 2023; 31(7): 690–699.

Brenner A, Kahn J, Hirsch T, et al Soiling determination for parabolic trough collectors based on operational data analysis and machine learning. Solar Energy 2023; 259: 257–276.

Zhang L, He Y, Wu H, et al Ultra-short-term multi-step probability interval prediction of photovoltaic power: A framework with time-series-segment feature analysis. Solar Energy 2023; 260: 71–82.

Segbefia OK, Akhtar N, Sætre TO. Moisture induced degradation in field-aged multicrystalline silicon photovoltaic modules. Solar Energy Materials and Solar Cells 2023; 258: 112407.

Smestad GP, Anderson C, Cholette ME, et al Variability and associated uncertainty in image analysis for soiling characterization in solar energy systems. Solar Energy Materials and Solar Cells 2023; 259: 112437.

Tas MPM, van Sark WGJHM. Experimental repair technique for glass defects of glass–glass photovoltaic modules – A techno-economic analysis. Solar Energy Materials and Solar Cells 2023; 257: 112397.

Liu ZG, Guo ZL, Song CC, et al Business model comparison of slum-based PV to realize low-cost and flexible power generation in city-level. Applied Energy 2023; 344: 121220.

Liu DY, Qi ST, Xu TT. In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced? Energy Policy 2023; 174: 113451.

Mazzeo D, Leva S, Matera N, et al A user-friendly and accurate machine learning tool for the evaluation of the worldwide yearly photovoltaic electricity production. Energy Reports 2023; 9: 6267–6,294.

Ajith M, Martínez-Ramón M. Deep learning algorithms for very short term solar irradiance forecasting: A survey. Renewable and Sustainable Energy Reviews 2023; 182: 113362.

Liu B, Yang D, Mayer MJ, et al Predictability and forecast skill of solar irradiance over the contiguous United States. Renewable and Sustainable Energy Reviews 2023; 182: 113359.

Rodríguez E, Cornejo-Ponce L, Cardemil JM, et al Estimation of one-minute direct normal irradiance using a deep neural network for five climate zones. Renewable and Sustainable Energy Reviews 2023; 183: 113486.

Akan T. Can renewable energy mitigate the impacts of inflation and policy interest on climate change? Renewable Energy 2023; 214: 255–289.

Laguarda A, Alonso-Suárez R, Abal G. Improved estimation of hourly direct normal solar irradiation (DNI) using geostationary satellite visible channel images over moderate albedo areas. Solar Energy 2023; 259: 30–40.

Libra M, Mrázek D, Tyukhov I, et al Reduced real lifetime of PV panels – Economic consequences. Solar Energy 2023; 259: 229–234.

Liao Q, Li S, Xi F, et al High-performance silicon carbon anodes based on value-added recycling strategy of end-of-life photovoltaic modules. Energy 2023; 281: 128345.

Sasai M, Yamashita T, Inoue D. Development of low-temperature thermal decomposition recycling technology from photovoltaic modules to flat glass applications. Japanese Journal of Applied Physics 2023; 62: 1043.

Li J, Yan S, Li Y, et al Recycling Si in waste crystalline silicon photovoltaic panels after mechanical crushing by electrostatic separation. Journal of Cleaner Production 2023; 415: 137908.

Wang X, Xue J, Hou X. Barriers analysis to Chinese waste photovoltaic module recycling under the background of “double carbon”. Renewable Energy 2023; 214: 39–54.

Tembo PM, Subramanian V. Current trends in silicon-based photovoltaic recycling: A technology, assessment, and policy review. Solar Energy 2023; 259: 137–150.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信