基于振动监测信号的强化学习优化支持向量机模型早期故障诊断

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenqin Zhao, Yaqiong Lv, Jialun Liu, C. Lee, Lei Tu
{"title":"基于振动监测信号的强化学习优化支持向量机模型早期故障诊断","authors":"Wenqin Zhao, Yaqiong Lv, Jialun Liu, C. Lee, Lei Tu","doi":"10.1080/08982112.2023.2193255","DOIUrl":null,"url":null,"abstract":"Abstract Effective fault diagnosis maximizes economic benefits by ensuring the stability of machinery systems. Detecting the faults of the key components in machinery, such as rolling bearings, at an early stage, helps to avoid accidents to optimize the maintenance efficiency. It is well known that faulty bearings always deliver a message through their abnormal vibration variation, which can be captured by vibration acceleration sensors in order to facilitate the deteriorating status assessment. However, a clue for an early fault is so ambiguous and sometimes masked by ambient noise, which makes the early fault diagnosis a challenging problem. To tackle the problem, we propose a vibration signal-based data-driven early fault diagnosis approach based on the reinforcement learning (RL) optimized support vector machine (SVM) model. The exploration of the hyperparameter optimization using RL to improve SVM performance motivates this research. Firstly, the corresponding features in the time domain, frequency domain and time-frequency domain are extracted from the obtained vibration signals of the key components under certain working conditions. Subsequently, to better recognize the pattern of an early fault, linear discriminant analysis (LDA) is employed in fuzing the multi-domain early fault features. Finally, the fused features are fed into the RL optimized-SVM model for fault diagnosis. Experimental validation was performed with a public dataset of rolling bearings, and the results confirmed the effectiveness and superiority of the approach compared with other methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Early fault diagnosis based on reinforcement learning optimized-SVM model with vibration-monitored signals\",\"authors\":\"Wenqin Zhao, Yaqiong Lv, Jialun Liu, C. Lee, Lei Tu\",\"doi\":\"10.1080/08982112.2023.2193255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Effective fault diagnosis maximizes economic benefits by ensuring the stability of machinery systems. Detecting the faults of the key components in machinery, such as rolling bearings, at an early stage, helps to avoid accidents to optimize the maintenance efficiency. It is well known that faulty bearings always deliver a message through their abnormal vibration variation, which can be captured by vibration acceleration sensors in order to facilitate the deteriorating status assessment. However, a clue for an early fault is so ambiguous and sometimes masked by ambient noise, which makes the early fault diagnosis a challenging problem. To tackle the problem, we propose a vibration signal-based data-driven early fault diagnosis approach based on the reinforcement learning (RL) optimized support vector machine (SVM) model. The exploration of the hyperparameter optimization using RL to improve SVM performance motivates this research. Firstly, the corresponding features in the time domain, frequency domain and time-frequency domain are extracted from the obtained vibration signals of the key components under certain working conditions. Subsequently, to better recognize the pattern of an early fault, linear discriminant analysis (LDA) is employed in fuzing the multi-domain early fault features. Finally, the fused features are fed into the RL optimized-SVM model for fault diagnosis. Experimental validation was performed with a public dataset of rolling bearings, and the results confirmed the effectiveness and superiority of the approach compared with other methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/08982112.2023.2193255\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08982112.2023.2193255","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

有效的故障诊断通过保证机械系统的稳定性来实现经济效益的最大化。在早期阶段检测到机械中关键部件(如滚动轴承)的故障,有助于避免事故,优化维修效率。众所周知,故障轴承总是通过其异常振动变化传递信息,振动加速度传感器可以捕获这些信息,以便于对恶化状态进行评估。然而,早期故障的线索是模糊的,有时被环境噪声掩盖,这使得早期故障诊断成为一个具有挑战性的问题。为了解决这一问题,提出了一种基于强化学习(RL)优化支持向量机(SVM)模型的基于振动信号的数据驱动早期故障诊断方法。探索利用强化学习的超参数优化来提高支持向量机的性能是本研究的动机。首先从得到的关键部件在一定工况下的振动信号中提取相应的时域、频域和时频域特征;随后,为了更好地识别早期故障的模式,采用线性判别分析(LDA)对多域早期故障特征进行融合。最后,将融合后的特征输入到RL优化svm模型中进行故障诊断。在滚动轴承公共数据集上进行了实验验证,与其他方法相比,结果证实了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early fault diagnosis based on reinforcement learning optimized-SVM model with vibration-monitored signals
Abstract Effective fault diagnosis maximizes economic benefits by ensuring the stability of machinery systems. Detecting the faults of the key components in machinery, such as rolling bearings, at an early stage, helps to avoid accidents to optimize the maintenance efficiency. It is well known that faulty bearings always deliver a message through their abnormal vibration variation, which can be captured by vibration acceleration sensors in order to facilitate the deteriorating status assessment. However, a clue for an early fault is so ambiguous and sometimes masked by ambient noise, which makes the early fault diagnosis a challenging problem. To tackle the problem, we propose a vibration signal-based data-driven early fault diagnosis approach based on the reinforcement learning (RL) optimized support vector machine (SVM) model. The exploration of the hyperparameter optimization using RL to improve SVM performance motivates this research. Firstly, the corresponding features in the time domain, frequency domain and time-frequency domain are extracted from the obtained vibration signals of the key components under certain working conditions. Subsequently, to better recognize the pattern of an early fault, linear discriminant analysis (LDA) is employed in fuzing the multi-domain early fault features. Finally, the fused features are fed into the RL optimized-SVM model for fault diagnosis. Experimental validation was performed with a public dataset of rolling bearings, and the results confirmed the effectiveness and superiority of the approach compared with other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信