{"title":"糖格列净和热量摄入限制可增加饮食诱导肥胖小鼠的超氧化物歧化酶2表达,促进抗氧化作用,减轻主动脉内皮功能障碍","authors":"Shigeru Kawade, Kazuma Ogiso, Sigfrid Casmir Shayo, Takahiko Obo, Aiko Arimura, Hiroshi Hashiguchi, Takahisa Deguchi, Yoshihiko Nishio","doi":"10.1111/jdi.13981","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims/Introduction</h3>\n \n <p>The mechanisms underlying the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on aortic endothelial dysfunction in diet-induced obesity are not clearly understood. This study investigated whether SGLT2 inhibition by luseogliflozin improved free fatty acid (FFA)-induced endothelial dysfunction in high-fat diet (HFD)-induced obese mice.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>Mice were fed a control diet or high-fat diet for 8 weeks, and then each diet with or without luseogliflozin was provided for an additional 8 weeks under free or paired feeding. Afterward, the thoracic aortas were removed and utilized for the experiments.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Luseogliflozin treatment decreased body weight, fasting blood glucose, insulin, and total cholesterol in HFD-fed mice only under paired feeding but not under free feeding. Endothelial-dependent vasodilation under FFA exposure conditions was significantly lower in HFD-fed mice than in control diet-fed mice, and luseogliflozin treatment ameliorated FFA-induced endothelial dysfunction. Reactive oxygen species (ROS) production induced by FFA was significantly increased in HFD-induced obese mice. Luseogliflozin treatment increased the expression of superoxide dismutase 2 (SOD2), an antioxidative molecule, and reduced FFA-induced ROS production in the thoracic aorta. Superoxide dismutase reversed FFA-induced endothelial dysfunction in HFD-fed mice.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>It was shown that caloric restriction is important for the effect of luseogliflozin on metabolic parameters and endothelial dysfunction. Furthermore, SGLT2 inhibition by luseogliflozin possibly ameliorates FFA-induced endothelial dysfunction by increasing SOD2 expression and decreasing reactive oxygen species production in the thoracic aorta.</p>\n </section>\n </div>","PeriodicalId":190,"journal":{"name":"Journal of Diabetes Investigation","volume":"14 4","pages":"548-559"},"PeriodicalIF":3.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jdi.13981","citationCount":"1","resultStr":"{\"title\":\"Luseogliflozin and caloric intake restriction increase superoxide dismutase 2 expression, promote antioxidative effects, and attenuate aortic endothelial dysfunction in diet-induced obese mice\",\"authors\":\"Shigeru Kawade, Kazuma Ogiso, Sigfrid Casmir Shayo, Takahiko Obo, Aiko Arimura, Hiroshi Hashiguchi, Takahisa Deguchi, Yoshihiko Nishio\",\"doi\":\"10.1111/jdi.13981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aims/Introduction</h3>\\n \\n <p>The mechanisms underlying the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on aortic endothelial dysfunction in diet-induced obesity are not clearly understood. This study investigated whether SGLT2 inhibition by luseogliflozin improved free fatty acid (FFA)-induced endothelial dysfunction in high-fat diet (HFD)-induced obese mice.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and Methods</h3>\\n \\n <p>Mice were fed a control diet or high-fat diet for 8 weeks, and then each diet with or without luseogliflozin was provided for an additional 8 weeks under free or paired feeding. Afterward, the thoracic aortas were removed and utilized for the experiments.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Luseogliflozin treatment decreased body weight, fasting blood glucose, insulin, and total cholesterol in HFD-fed mice only under paired feeding but not under free feeding. Endothelial-dependent vasodilation under FFA exposure conditions was significantly lower in HFD-fed mice than in control diet-fed mice, and luseogliflozin treatment ameliorated FFA-induced endothelial dysfunction. Reactive oxygen species (ROS) production induced by FFA was significantly increased in HFD-induced obese mice. Luseogliflozin treatment increased the expression of superoxide dismutase 2 (SOD2), an antioxidative molecule, and reduced FFA-induced ROS production in the thoracic aorta. Superoxide dismutase reversed FFA-induced endothelial dysfunction in HFD-fed mice.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>It was shown that caloric restriction is important for the effect of luseogliflozin on metabolic parameters and endothelial dysfunction. Furthermore, SGLT2 inhibition by luseogliflozin possibly ameliorates FFA-induced endothelial dysfunction by increasing SOD2 expression and decreasing reactive oxygen species production in the thoracic aorta.</p>\\n </section>\\n </div>\",\"PeriodicalId\":190,\"journal\":{\"name\":\"Journal of Diabetes Investigation\",\"volume\":\"14 4\",\"pages\":\"548-559\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jdi.13981\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jdi.13981\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Investigation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jdi.13981","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Luseogliflozin and caloric intake restriction increase superoxide dismutase 2 expression, promote antioxidative effects, and attenuate aortic endothelial dysfunction in diet-induced obese mice
Aims/Introduction
The mechanisms underlying the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on aortic endothelial dysfunction in diet-induced obesity are not clearly understood. This study investigated whether SGLT2 inhibition by luseogliflozin improved free fatty acid (FFA)-induced endothelial dysfunction in high-fat diet (HFD)-induced obese mice.
Materials and Methods
Mice were fed a control diet or high-fat diet for 8 weeks, and then each diet with or without luseogliflozin was provided for an additional 8 weeks under free or paired feeding. Afterward, the thoracic aortas were removed and utilized for the experiments.
Results
Luseogliflozin treatment decreased body weight, fasting blood glucose, insulin, and total cholesterol in HFD-fed mice only under paired feeding but not under free feeding. Endothelial-dependent vasodilation under FFA exposure conditions was significantly lower in HFD-fed mice than in control diet-fed mice, and luseogliflozin treatment ameliorated FFA-induced endothelial dysfunction. Reactive oxygen species (ROS) production induced by FFA was significantly increased in HFD-induced obese mice. Luseogliflozin treatment increased the expression of superoxide dismutase 2 (SOD2), an antioxidative molecule, and reduced FFA-induced ROS production in the thoracic aorta. Superoxide dismutase reversed FFA-induced endothelial dysfunction in HFD-fed mice.
Conclusions
It was shown that caloric restriction is important for the effect of luseogliflozin on metabolic parameters and endothelial dysfunction. Furthermore, SGLT2 inhibition by luseogliflozin possibly ameliorates FFA-induced endothelial dysfunction by increasing SOD2 expression and decreasing reactive oxygen species production in the thoracic aorta.
期刊介绍:
Journal of Diabetes Investigation is your core diabetes journal from Asia; the official journal of the Asian Association for the Study of Diabetes (AASD). The journal publishes original research, country reports, commentaries, reviews, mini-reviews, case reports, letters, as well as editorials and news. Embracing clinical and experimental research in diabetes and related areas, the Journal of Diabetes Investigation includes aspects of prevention, treatment, as well as molecular aspects and pathophysiology. Translational research focused on the exchange of ideas between clinicians and researchers is also welcome. Journal of Diabetes Investigation is indexed by Science Citation Index Expanded (SCIE).