双硅模板介导合成氮掺杂介孔碳纳米管及其在超级电容器中的应用

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2022-12-30 DOI:10.1002/smll.202205725
Qian Zhang, Chao Deng, Zaimei Huang, Qingcheng Zhang, Xiaocheng Chai, Deliang Yi, Yuanyuan Fang, Minying Wu, Xingdong Wang, Yi Tang, Yajun Wang
{"title":"双硅模板介导合成氮掺杂介孔碳纳米管及其在超级电容器中的应用","authors":"Qian Zhang,&nbsp;Chao Deng,&nbsp;Zaimei Huang,&nbsp;Qingcheng Zhang,&nbsp;Xiaocheng Chai,&nbsp;Deliang Yi,&nbsp;Yuanyuan Fang,&nbsp;Minying Wu,&nbsp;Xingdong Wang,&nbsp;Yi Tang,&nbsp;Yajun Wang","doi":"10.1002/smll.202205725","DOIUrl":null,"url":null,"abstract":"<p>1D carbon nanotubes have been widely applied in many fields, such as catalysis, sensing and energy storage. However, the long tunnel-like pores and relatively low specific surface area of carbon nanotubes often restrict their performance in certain applications. Herein, a dual-silica template-mediated method to prepare nitrogen-doped mesoporous carbon nanotubes (NMCTs) through co-depositing polydopamine (both carbon and nitrogen precursors) and silica nanoparticles (the porogen for mesopore formation) on a silica nanowire template is proposed. The obtained NMCTs have a hierarchical pore structure of large open mesopores and tubular macropores, a high specific surface area (1037 m<sup>2</sup> g<sup>−1</sup>), and homogeneous nitrogen doping. The NMCT-45 (prepared at an interval time of 45 min) shows excellent performance in supercapacitor applications with a high capacitance (373.6 F g<sup>−1</sup> at 1.0 A g−<sup>1</sup>), excellent rate capability, high energy density (11.6 W h kg<sup>−1</sup> at a power density of 313 W kg<sup>−1</sup>), and outstanding cycling stability (98.2% capacity retention after 10 000 cycles at 10 A g<sup>−1</sup>). Owing to the unique tubular morphology, hierarchical porosity and homogeneous N-doping, the NMCT also has tremendous potential in electrochemical catalysis and sensing applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"19 12","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Dual-Silica Template-Mediated Synthesis of Nitrogen-Doped Mesoporous Carbon Nanotubes for Supercapacitor Applications\",\"authors\":\"Qian Zhang,&nbsp;Chao Deng,&nbsp;Zaimei Huang,&nbsp;Qingcheng Zhang,&nbsp;Xiaocheng Chai,&nbsp;Deliang Yi,&nbsp;Yuanyuan Fang,&nbsp;Minying Wu,&nbsp;Xingdong Wang,&nbsp;Yi Tang,&nbsp;Yajun Wang\",\"doi\":\"10.1002/smll.202205725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>1D carbon nanotubes have been widely applied in many fields, such as catalysis, sensing and energy storage. However, the long tunnel-like pores and relatively low specific surface area of carbon nanotubes often restrict their performance in certain applications. Herein, a dual-silica template-mediated method to prepare nitrogen-doped mesoporous carbon nanotubes (NMCTs) through co-depositing polydopamine (both carbon and nitrogen precursors) and silica nanoparticles (the porogen for mesopore formation) on a silica nanowire template is proposed. The obtained NMCTs have a hierarchical pore structure of large open mesopores and tubular macropores, a high specific surface area (1037 m<sup>2</sup> g<sup>−1</sup>), and homogeneous nitrogen doping. The NMCT-45 (prepared at an interval time of 45 min) shows excellent performance in supercapacitor applications with a high capacitance (373.6 F g<sup>−1</sup> at 1.0 A g−<sup>1</sup>), excellent rate capability, high energy density (11.6 W h kg<sup>−1</sup> at a power density of 313 W kg<sup>−1</sup>), and outstanding cycling stability (98.2% capacity retention after 10 000 cycles at 10 A g<sup>−1</sup>). Owing to the unique tubular morphology, hierarchical porosity and homogeneous N-doping, the NMCT also has tremendous potential in electrochemical catalysis and sensing applications.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"19 12\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202205725\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202205725","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

一维碳纳米管在催化、传感、储能等领域有着广泛的应用。然而,碳纳米管的长孔洞和相对较低的比表面积限制了其在某些应用中的性能。本文提出了一种双二氧化硅模板介导的方法,通过在二氧化硅纳米线模板上共沉积聚多巴胺(碳和氮前体)和二氧化硅纳米粒子(形成介孔的孔隙素)来制备氮掺杂的介孔碳纳米管(NMCTs)。所制得的nmct具有大的开放介孔和管状大孔的分层孔结构,具有高的比表面积(1037 m2 g−1)和均匀的氮掺杂。NMCT-45(制备时间间隔为45 min)在超级电容器应用中表现出优异的性能,具有高电容(在1.0 a g−1时为373.6 F g−1)、优异的倍率能力、高能量密度(在功率密度为313 W kg−1时为11.6 W h kg−1)和出色的循环稳定性(在10 a g−1下循环10000次后容量保持率为98.2%)。由于其独特的管状结构、分层孔隙度和均匀的n掺杂,NMCT在电化学催化和传感方面也具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Silica Template-Mediated Synthesis of Nitrogen-Doped Mesoporous Carbon Nanotubes for Supercapacitor Applications

Dual-Silica Template-Mediated Synthesis of Nitrogen-Doped Mesoporous Carbon Nanotubes for Supercapacitor Applications

1D carbon nanotubes have been widely applied in many fields, such as catalysis, sensing and energy storage. However, the long tunnel-like pores and relatively low specific surface area of carbon nanotubes often restrict their performance in certain applications. Herein, a dual-silica template-mediated method to prepare nitrogen-doped mesoporous carbon nanotubes (NMCTs) through co-depositing polydopamine (both carbon and nitrogen precursors) and silica nanoparticles (the porogen for mesopore formation) on a silica nanowire template is proposed. The obtained NMCTs have a hierarchical pore structure of large open mesopores and tubular macropores, a high specific surface area (1037 m2 g−1), and homogeneous nitrogen doping. The NMCT-45 (prepared at an interval time of 45 min) shows excellent performance in supercapacitor applications with a high capacitance (373.6 F g−1 at 1.0 A g−1), excellent rate capability, high energy density (11.6 W h kg−1 at a power density of 313 W kg−1), and outstanding cycling stability (98.2% capacity retention after 10 000 cycles at 10 A g−1). Owing to the unique tubular morphology, hierarchical porosity and homogeneous N-doping, the NMCT also has tremendous potential in electrochemical catalysis and sensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信