{"title":"LncRNA FOXP4-AS通过调控miR-3184-5p/EIF5A轴促进非小细胞肺癌的进展","authors":"Dingbiao Li, Zhenhua Li, Wang YanFei, Ying Wang, Jianlin Shi, Chang Liu, Laihao Qu, Shoujun Deng, Dalin Xiong","doi":"10.1002/term.3275","DOIUrl":null,"url":null,"abstract":"<p>Long non coding RNA FOXP4-AS1 exerted crucial functions in various human cancers, while its role in non-small cell lung cancer (NSCLC) remains unclear. A total of 30 pairs of NSCLC tissues and matched adjacent normal tissues were used to evaluate the expression of FOXP4-AS1 and miR-3184-5p. Cell proliferation was assessed by CCK-8 assay and colony formation assay. Cell apoptosis was measured by flow cytometry. Bioinformatic analysis and luciferase reporter assay were performed to determine the regulatory relationship among FOXP4-AS1, miR-3184-5p and EIF5A. The xenograft tumor model was constructed to confirm the function of FOXP4-AS1 in NSCLC progression. The results showed that FOXP4-AS1 was upregulated and miR-3184-5p was downregulated in NSCLC tissues and cell lines. Downregulation of FOXP4-AS1 significantly reduced cell proliferation and induced apoptosis of NSCLC cells in vitro. FOXP4-AS1 could regulated the expression of EIF5A by binding to miR-3184-5p. Rescue experiments showed that downregulation of miR-3184-5p or overexpression of EIF5A obviously attenuated the inhibitory effects of si-FOXP4-AS1 on cell proliferation, as well as the stimulating effects on cell apoptosis. Moreover, knockdown of FOXP4-AS1 could efficiently inhibited tumor development of NSCLC in vivo. Downregulation of FOXP4-AS1 attenuated the progression of NSCLC by regulating miR-3184-5p and EIF5A.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 4","pages":"335-345"},"PeriodicalIF":3.1000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3275","citationCount":"3","resultStr":"{\"title\":\"LncRNA FOXP4-AS promotes the progression of non-small cell lung cancer by regulating the miR-3184-5p/EIF5A axis\",\"authors\":\"Dingbiao Li, Zhenhua Li, Wang YanFei, Ying Wang, Jianlin Shi, Chang Liu, Laihao Qu, Shoujun Deng, Dalin Xiong\",\"doi\":\"10.1002/term.3275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Long non coding RNA FOXP4-AS1 exerted crucial functions in various human cancers, while its role in non-small cell lung cancer (NSCLC) remains unclear. A total of 30 pairs of NSCLC tissues and matched adjacent normal tissues were used to evaluate the expression of FOXP4-AS1 and miR-3184-5p. Cell proliferation was assessed by CCK-8 assay and colony formation assay. Cell apoptosis was measured by flow cytometry. Bioinformatic analysis and luciferase reporter assay were performed to determine the regulatory relationship among FOXP4-AS1, miR-3184-5p and EIF5A. The xenograft tumor model was constructed to confirm the function of FOXP4-AS1 in NSCLC progression. The results showed that FOXP4-AS1 was upregulated and miR-3184-5p was downregulated in NSCLC tissues and cell lines. Downregulation of FOXP4-AS1 significantly reduced cell proliferation and induced apoptosis of NSCLC cells in vitro. FOXP4-AS1 could regulated the expression of EIF5A by binding to miR-3184-5p. Rescue experiments showed that downregulation of miR-3184-5p or overexpression of EIF5A obviously attenuated the inhibitory effects of si-FOXP4-AS1 on cell proliferation, as well as the stimulating effects on cell apoptosis. Moreover, knockdown of FOXP4-AS1 could efficiently inhibited tumor development of NSCLC in vivo. Downregulation of FOXP4-AS1 attenuated the progression of NSCLC by regulating miR-3184-5p and EIF5A.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 4\",\"pages\":\"335-345\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3275\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3275\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3275","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
LncRNA FOXP4-AS promotes the progression of non-small cell lung cancer by regulating the miR-3184-5p/EIF5A axis
Long non coding RNA FOXP4-AS1 exerted crucial functions in various human cancers, while its role in non-small cell lung cancer (NSCLC) remains unclear. A total of 30 pairs of NSCLC tissues and matched adjacent normal tissues were used to evaluate the expression of FOXP4-AS1 and miR-3184-5p. Cell proliferation was assessed by CCK-8 assay and colony formation assay. Cell apoptosis was measured by flow cytometry. Bioinformatic analysis and luciferase reporter assay were performed to determine the regulatory relationship among FOXP4-AS1, miR-3184-5p and EIF5A. The xenograft tumor model was constructed to confirm the function of FOXP4-AS1 in NSCLC progression. The results showed that FOXP4-AS1 was upregulated and miR-3184-5p was downregulated in NSCLC tissues and cell lines. Downregulation of FOXP4-AS1 significantly reduced cell proliferation and induced apoptosis of NSCLC cells in vitro. FOXP4-AS1 could regulated the expression of EIF5A by binding to miR-3184-5p. Rescue experiments showed that downregulation of miR-3184-5p or overexpression of EIF5A obviously attenuated the inhibitory effects of si-FOXP4-AS1 on cell proliferation, as well as the stimulating effects on cell apoptosis. Moreover, knockdown of FOXP4-AS1 could efficiently inhibited tumor development of NSCLC in vivo. Downregulation of FOXP4-AS1 attenuated the progression of NSCLC by regulating miR-3184-5p and EIF5A.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.