{"title":"通过C=Se键裂解反应简单快速地获得膦取代铜(I)-卡宾配合物","authors":"Sabari Veerapathiran, Prof.?Dr. Ganesan Prabusankar","doi":"10.1002/asia.202300217","DOIUrl":null,"url":null,"abstract":"The phosphine-coordinated copper(I)-N-heterocyclic carbene complexes have emerged as an efficient material in catalysis and light-emitting applications. In this study, a gentle and sustainable approach to the copper(I)-carbene phosphine complexes are reported through an efficient C=Se activation protocol. The complexes [(Py^NHC)Cu(PPh3)2]X, X = BF4 (1), ClO4 (2), PF6 (3) and OTf (4); Py^NHC = 3-isopropyl-1-(pyridin-2-yl)-imidazol-2-ylidene, and [(Py^NHC)Cu(PPh3)(X)], X = Br (5) and I (6) have been synthesized by treating 1-isopropyl-3-(pyridin-2-yl)-imidazole-2-selone with corresponding copper(I) precursors and triphenylphosphine. In this synthetic strategy, N-heterocyclic carbene gets transferred from N-heterocyclic selone through a C=Se bond cleavage reaction to form copper(I) complexes within five minutes at room temperature. In addition, the mechanism responsible for the C=Se bond cleavage reaction has been fully investigated. These reactions are not sensitive to moisture and oxygen.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple and Fast Access to Phosphine-Substituted Copper(I)-Carbene Complexes via C=Se Bond Cleavage Reaction\",\"authors\":\"Sabari Veerapathiran, Prof.?Dr. Ganesan Prabusankar\",\"doi\":\"10.1002/asia.202300217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phosphine-coordinated copper(I)-N-heterocyclic carbene complexes have emerged as an efficient material in catalysis and light-emitting applications. In this study, a gentle and sustainable approach to the copper(I)-carbene phosphine complexes are reported through an efficient C=Se activation protocol. The complexes [(Py^NHC)Cu(PPh3)2]X, X = BF4 (1), ClO4 (2), PF6 (3) and OTf (4); Py^NHC = 3-isopropyl-1-(pyridin-2-yl)-imidazol-2-ylidene, and [(Py^NHC)Cu(PPh3)(X)], X = Br (5) and I (6) have been synthesized by treating 1-isopropyl-3-(pyridin-2-yl)-imidazole-2-selone with corresponding copper(I) precursors and triphenylphosphine. In this synthetic strategy, N-heterocyclic carbene gets transferred from N-heterocyclic selone through a C=Se bond cleavage reaction to form copper(I) complexes within five minutes at room temperature. In addition, the mechanism responsible for the C=Se bond cleavage reaction has been fully investigated. These reactions are not sensitive to moisture and oxygen.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asia.202300217\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asia.202300217","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Simple and Fast Access to Phosphine-Substituted Copper(I)-Carbene Complexes via C=Se Bond Cleavage Reaction
The phosphine-coordinated copper(I)-N-heterocyclic carbene complexes have emerged as an efficient material in catalysis and light-emitting applications. In this study, a gentle and sustainable approach to the copper(I)-carbene phosphine complexes are reported through an efficient C=Se activation protocol. The complexes [(Py^NHC)Cu(PPh3)2]X, X = BF4 (1), ClO4 (2), PF6 (3) and OTf (4); Py^NHC = 3-isopropyl-1-(pyridin-2-yl)-imidazol-2-ylidene, and [(Py^NHC)Cu(PPh3)(X)], X = Br (5) and I (6) have been synthesized by treating 1-isopropyl-3-(pyridin-2-yl)-imidazole-2-selone with corresponding copper(I) precursors and triphenylphosphine. In this synthetic strategy, N-heterocyclic carbene gets transferred from N-heterocyclic selone through a C=Se bond cleavage reaction to form copper(I) complexes within five minutes at room temperature. In addition, the mechanism responsible for the C=Se bond cleavage reaction has been fully investigated. These reactions are not sensitive to moisture and oxygen.