周期驱动系统的通用高频行为:从动态稳定到Floquet工程

IF 35 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER
M. Bukov, L. D'Alessio, A. Polkovnikov
{"title":"周期驱动系统的通用高频行为:从动态稳定到Floquet工程","authors":"M. Bukov, L. D'Alessio, A. Polkovnikov","doi":"10.1080/00018732.2015.1055918","DOIUrl":null,"url":null,"abstract":"We give a general overview of the high-frequency regime in periodically driven systems and identify three distinct classes of driving protocols in which the infinite-frequency Floquet Hamiltonian is not equal to the time-averaged Hamiltonian. These classes cover systems, such as the Kapitza pendulum, the Harper–Hofstadter model of neutral atoms in a magnetic field, the Haldane Floquet Chern insulator and others. In all setups considered, we discuss both the infinite-frequency limit and the leading finite-frequency corrections to the Floquet Hamiltonian. We provide a short overview of Floquet theory focusing on the gauge structure associated with the choice of stroboscopic frame and the differences between stroboscopic and non-stroboscopic dynamics. In the latter case, one has to work with dressed operators representing observables and a dressed density matrix. We also comment on the application of Floquet Theory to systems described by static Hamiltonians with well-separated energy scales and, in particular, discuss parallels between the inverse-frequency expansion and the Schrieffer–Wolff transformation extending the latter to driven systems.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"64 1","pages":"139 - 226"},"PeriodicalIF":35.0000,"publicationDate":"2014-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2015.1055918","citationCount":"792","resultStr":"{\"title\":\"Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering\",\"authors\":\"M. Bukov, L. D'Alessio, A. Polkovnikov\",\"doi\":\"10.1080/00018732.2015.1055918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a general overview of the high-frequency regime in periodically driven systems and identify three distinct classes of driving protocols in which the infinite-frequency Floquet Hamiltonian is not equal to the time-averaged Hamiltonian. These classes cover systems, such as the Kapitza pendulum, the Harper–Hofstadter model of neutral atoms in a magnetic field, the Haldane Floquet Chern insulator and others. In all setups considered, we discuss both the infinite-frequency limit and the leading finite-frequency corrections to the Floquet Hamiltonian. We provide a short overview of Floquet theory focusing on the gauge structure associated with the choice of stroboscopic frame and the differences between stroboscopic and non-stroboscopic dynamics. In the latter case, one has to work with dressed operators representing observables and a dressed density matrix. We also comment on the application of Floquet Theory to systems described by static Hamiltonians with well-separated energy scales and, in particular, discuss parallels between the inverse-frequency expansion and the Schrieffer–Wolff transformation extending the latter to driven systems.\",\"PeriodicalId\":7373,\"journal\":{\"name\":\"Advances in Physics\",\"volume\":\"64 1\",\"pages\":\"139 - 226\"},\"PeriodicalIF\":35.0000,\"publicationDate\":\"2014-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00018732.2015.1055918\",\"citationCount\":\"792\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/00018732.2015.1055918\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2015.1055918","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 792

摘要

本文概述了周期驱动系统的高频状态,并确定了三种不同类型的驱动协议,其中无限频率的Floquet哈密顿量不等于时间平均哈密顿量。这些课程涵盖了卡皮察钟摆、磁场中中性原子的哈珀-霍夫施塔特模型、霍尔丹-弗洛凯-陈绝缘体等系统。在所有考虑的设置中,我们讨论了对Floquet hamilton的无限频率极限和主要的有限频率修正。我们简要概述了Floquet理论,重点介绍了与频闪框架选择相关的测量结构以及频闪和非频闪动力学之间的差异。在后一种情况下,必须使用表示可观测值的修饰算子和修饰密度矩阵。我们还评论了Floquet理论在由具有良好分离能量尺度的静态哈密顿量描述的系统中的应用,特别是讨论了反频率展开与将后者扩展到驱动系统的Schrieffer-Wolff变换之间的相似之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering
We give a general overview of the high-frequency regime in periodically driven systems and identify three distinct classes of driving protocols in which the infinite-frequency Floquet Hamiltonian is not equal to the time-averaged Hamiltonian. These classes cover systems, such as the Kapitza pendulum, the Harper–Hofstadter model of neutral atoms in a magnetic field, the Haldane Floquet Chern insulator and others. In all setups considered, we discuss both the infinite-frequency limit and the leading finite-frequency corrections to the Floquet Hamiltonian. We provide a short overview of Floquet theory focusing on the gauge structure associated with the choice of stroboscopic frame and the differences between stroboscopic and non-stroboscopic dynamics. In the latter case, one has to work with dressed operators representing observables and a dressed density matrix. We also comment on the application of Floquet Theory to systems described by static Hamiltonians with well-separated energy scales and, in particular, discuss parallels between the inverse-frequency expansion and the Schrieffer–Wolff transformation extending the latter to driven systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Physics
Advances in Physics 物理-物理:凝聚态物理
CiteScore
67.60
自引率
0.00%
发文量
1
期刊介绍: Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信