{"title":"对偶的键代数方法","authors":"E. Cobanera, G. Ortiz, Z. Nussinov","doi":"10.1080/00018732.2011.619814","DOIUrl":null,"url":null,"abstract":"An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ℤ2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan–Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"679 - 798"},"PeriodicalIF":35.0000,"publicationDate":"2011-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.619814","citationCount":"85","resultStr":"{\"title\":\"The bond-algebraic approach to dualities\",\"authors\":\"E. Cobanera, G. Ortiz, Z. Nussinov\",\"doi\":\"10.1080/00018732.2011.619814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ℤ2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan–Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.\",\"PeriodicalId\":7373,\"journal\":{\"name\":\"Advances in Physics\",\"volume\":\"60 1\",\"pages\":\"679 - 798\"},\"PeriodicalIF\":35.0000,\"publicationDate\":\"2011-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00018732.2011.619814\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/00018732.2011.619814\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2011.619814","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ℤ2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan–Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.
期刊介绍:
Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.