{"title":"高性能钠离子电池中普鲁士蓝类似物的缺陷工程","authors":"Xinyi Liu, Yu Cao, Jie Sun","doi":"10.1002/aenm.202202532","DOIUrl":null,"url":null,"abstract":"<p>Prussian blue (PB) and its analogs (PBAs) are considered one of the most promising materials for sodium-ion batteries (SIBs). The typical PB with perfect structure and highly integrated lattice has excellent structural stability, but the possible structural defects inevitably generated in the synthesis process will deteriorate its structure during cycling, resulting in rapid capacity degradation, and impede their practical application. However, not all defects are detrimental, as proper defect construction can customize the local nature of PB to achieve outstanding new functions. This paper reviews various defect engineering designs for PBAs, such as the creation/suppression of cation or anion vacancies, the introduction of cation doping, the reduction of dislocation defects, and the construction of pore-defect engineering. As a result, the structure–activity relationship between defects and electrochemical performance of SIBs is summarized. Moreover, the existing challenges and future development prospects are discussed, and the potential application of defect engineering in PBAs for SIBs is emphasized.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"12 46","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Defect Engineering in Prussian Blue Analogs for High-Performance Sodium-Ion Batteries\",\"authors\":\"Xinyi Liu, Yu Cao, Jie Sun\",\"doi\":\"10.1002/aenm.202202532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prussian blue (PB) and its analogs (PBAs) are considered one of the most promising materials for sodium-ion batteries (SIBs). The typical PB with perfect structure and highly integrated lattice has excellent structural stability, but the possible structural defects inevitably generated in the synthesis process will deteriorate its structure during cycling, resulting in rapid capacity degradation, and impede their practical application. However, not all defects are detrimental, as proper defect construction can customize the local nature of PB to achieve outstanding new functions. This paper reviews various defect engineering designs for PBAs, such as the creation/suppression of cation or anion vacancies, the introduction of cation doping, the reduction of dislocation defects, and the construction of pore-defect engineering. As a result, the structure–activity relationship between defects and electrochemical performance of SIBs is summarized. Moreover, the existing challenges and future development prospects are discussed, and the potential application of defect engineering in PBAs for SIBs is emphasized.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"12 46\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202202532\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202202532","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Defect Engineering in Prussian Blue Analogs for High-Performance Sodium-Ion Batteries
Prussian blue (PB) and its analogs (PBAs) are considered one of the most promising materials for sodium-ion batteries (SIBs). The typical PB with perfect structure and highly integrated lattice has excellent structural stability, but the possible structural defects inevitably generated in the synthesis process will deteriorate its structure during cycling, resulting in rapid capacity degradation, and impede their practical application. However, not all defects are detrimental, as proper defect construction can customize the local nature of PB to achieve outstanding new functions. This paper reviews various defect engineering designs for PBAs, such as the creation/suppression of cation or anion vacancies, the introduction of cation doping, the reduction of dislocation defects, and the construction of pore-defect engineering. As a result, the structure–activity relationship between defects and electrochemical performance of SIBs is summarized. Moreover, the existing challenges and future development prospects are discussed, and the potential application of defect engineering in PBAs for SIBs is emphasized.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.