热浪:物理认识和科学挑战

IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
D. Barriopedro, R. García-Herrera, C. Ordó?ez, D. G. Miralles, S. Salcedo-Sanz
{"title":"热浪:物理认识和科学挑战","authors":"D. Barriopedro,&nbsp;R. García-Herrera,&nbsp;C. Ordó?ez,&nbsp;D. G. Miralles,&nbsp;S. Salcedo-Sanz","doi":"10.1029/2022RG000780","DOIUrl":null,"url":null,"abstract":"<p>Heat waves (HWs) can cause large socioeconomic and environmental impacts. The observed increases in their frequency, intensity and duration are projected to continue with global warming. This review synthesizes the state of knowledge and scientific challenges. It discusses different aspects related to the definition, triggering mechanisms, observed changes and future projections of HWs, as well as emerging research lines on subseasonal forecasts and specific types of HWs. We also identify gaps that limit progress and delineate priorities for future research. Overall, the physical drivers of HWs are not well understood, partly due to difficulties in the quantification of their interactions and responses to climate change. Influential factors convey processes at different spatio-temporal scales, from global warming and the large-scale atmospheric circulation to regional and local factors in the affected area and upwind regions. Although some thermodynamic processes have been identified, there is a lack of understanding of dynamical aspects, regional forcings and feedbacks, and their future changes. This hampers the attribution of regional trends and individual events, and reduces the ability to provide accurate forecasts and regional projections. Sustained observational networks, models of diverse complexity, narrative-based methodological approaches and artificial intelligence offer new opportunities toward process-based understanding and interdisciplinary research.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 2","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000780","citationCount":"9","resultStr":"{\"title\":\"Heat Waves: Physical Understanding and Scientific Challenges\",\"authors\":\"D. Barriopedro,&nbsp;R. García-Herrera,&nbsp;C. Ordó?ez,&nbsp;D. G. Miralles,&nbsp;S. Salcedo-Sanz\",\"doi\":\"10.1029/2022RG000780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heat waves (HWs) can cause large socioeconomic and environmental impacts. The observed increases in their frequency, intensity and duration are projected to continue with global warming. This review synthesizes the state of knowledge and scientific challenges. It discusses different aspects related to the definition, triggering mechanisms, observed changes and future projections of HWs, as well as emerging research lines on subseasonal forecasts and specific types of HWs. We also identify gaps that limit progress and delineate priorities for future research. Overall, the physical drivers of HWs are not well understood, partly due to difficulties in the quantification of their interactions and responses to climate change. Influential factors convey processes at different spatio-temporal scales, from global warming and the large-scale atmospheric circulation to regional and local factors in the affected area and upwind regions. Although some thermodynamic processes have been identified, there is a lack of understanding of dynamical aspects, regional forcings and feedbacks, and their future changes. This hampers the attribution of regional trends and individual events, and reduces the ability to provide accurate forecasts and regional projections. Sustained observational networks, models of diverse complexity, narrative-based methodological approaches and artificial intelligence offer new opportunities toward process-based understanding and interdisciplinary research.</p>\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"61 2\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000780\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2022RG000780\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022RG000780","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 9

摘要

热浪(HWs)会造成巨大的社会经济和环境影响。观测到的其频率、强度和持续时间的增加预计将随着全球变暖而继续。这篇综述综合了知识状况和科学挑战。它讨论了与高温天气的定义、触发机制、观测到的变化和未来预测有关的不同方面,以及分季节预报和特定类型高温天气的新研究方向。我们还确定了限制进展的差距,并划定了未来研究的优先事项。总体而言,高通量的物理驱动因素尚未得到很好的理解,部分原因是难以量化它们的相互作用和对气候变化的响应。从全球变暖和大尺度大气环流到受影响地区和逆风地区的区域和局地因子,影响因子传递了不同时空尺度的过程。虽然已经确定了一些热力学过程,但缺乏对动力学方面、区域强迫和反馈及其未来变化的了解。这妨碍了对区域趋势和个别事件的归因,并降低了提供准确预报和区域预测的能力。持续的观测网络、不同复杂性的模型、基于叙事的方法论方法和人工智能为基于过程的理解和跨学科研究提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat Waves: Physical Understanding and Scientific Challenges

Heat waves (HWs) can cause large socioeconomic and environmental impacts. The observed increases in their frequency, intensity and duration are projected to continue with global warming. This review synthesizes the state of knowledge and scientific challenges. It discusses different aspects related to the definition, triggering mechanisms, observed changes and future projections of HWs, as well as emerging research lines on subseasonal forecasts and specific types of HWs. We also identify gaps that limit progress and delineate priorities for future research. Overall, the physical drivers of HWs are not well understood, partly due to difficulties in the quantification of their interactions and responses to climate change. Influential factors convey processes at different spatio-temporal scales, from global warming and the large-scale atmospheric circulation to regional and local factors in the affected area and upwind regions. Although some thermodynamic processes have been identified, there is a lack of understanding of dynamical aspects, regional forcings and feedbacks, and their future changes. This hampers the attribution of regional trends and individual events, and reduces the ability to provide accurate forecasts and regional projections. Sustained observational networks, models of diverse complexity, narrative-based methodological approaches and artificial intelligence offer new opportunities toward process-based understanding and interdisciplinary research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews of Geophysics
Reviews of Geophysics 地学-地球化学与地球物理
CiteScore
50.30
自引率
0.80%
发文量
28
审稿时长
12 months
期刊介绍: Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信