Yiran Liu, WeiJian Teo, Haochen Yang, Jackson Champer
{"title":"在空间显式模型中,对抗性种间关系通过基因驱动促进种群抑制","authors":"Yiran Liu, WeiJian Teo, Haochen Yang, Jackson Champer","doi":"10.1111/ele.14232","DOIUrl":null,"url":null,"abstract":"<p>Suppression gene drives bias their inheritance to spread through a population, potentially eliminating it when they reach high frequency. CRISPR homing suppression drives have already seen success in the laboratory, but several models predict that success may be elusive in population with realistic spatial structure due to extinction-recolonization cycles. Here, we extend our continuous space framework to include two competing species or predator–prey pairs. We find that in both general and mosquito-specific models, competing species or predators can facilitate drive-based suppression, albeit at the cost of an increased rate of drive loss outcomes. These results are robust in mosquito models with seasonal fluctuations. Our study illustrates the difficulty of predicting outcomes in complex ecosystems. However, our results are promising for the prospects of less powerful suppression gene drives to successfully eliminate target mosquito and other pest populations.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"26 7","pages":"1174-1185"},"PeriodicalIF":7.6000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial interspecies relationships facilitate population suppression by gene drive in spatially explicit models\",\"authors\":\"Yiran Liu, WeiJian Teo, Haochen Yang, Jackson Champer\",\"doi\":\"10.1111/ele.14232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppression gene drives bias their inheritance to spread through a population, potentially eliminating it when they reach high frequency. CRISPR homing suppression drives have already seen success in the laboratory, but several models predict that success may be elusive in population with realistic spatial structure due to extinction-recolonization cycles. Here, we extend our continuous space framework to include two competing species or predator–prey pairs. We find that in both general and mosquito-specific models, competing species or predators can facilitate drive-based suppression, albeit at the cost of an increased rate of drive loss outcomes. These results are robust in mosquito models with seasonal fluctuations. Our study illustrates the difficulty of predicting outcomes in complex ecosystems. However, our results are promising for the prospects of less powerful suppression gene drives to successfully eliminate target mosquito and other pest populations.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"26 7\",\"pages\":\"1174-1185\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14232\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14232","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Adversarial interspecies relationships facilitate population suppression by gene drive in spatially explicit models
Suppression gene drives bias their inheritance to spread through a population, potentially eliminating it when they reach high frequency. CRISPR homing suppression drives have already seen success in the laboratory, but several models predict that success may be elusive in population with realistic spatial structure due to extinction-recolonization cycles. Here, we extend our continuous space framework to include two competing species or predator–prey pairs. We find that in both general and mosquito-specific models, competing species or predators can facilitate drive-based suppression, albeit at the cost of an increased rate of drive loss outcomes. These results are robust in mosquito models with seasonal fluctuations. Our study illustrates the difficulty of predicting outcomes in complex ecosystems. However, our results are promising for the prospects of less powerful suppression gene drives to successfully eliminate target mosquito and other pest populations.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.