Dr. Chun-Rong Ye, Wen-Jian Wang, Dr. Wei Chen, Yonghong Xiao, Hai-Feng Zhang, Bing-Ling Dai, Si-Han Chen, Xu-Dong Wu, Mian Li, Prof. Xiao-Chun Huang
{"title":"利用形状互补性在含咪唑MOF的自适应瓶颈孔中提纯环己烷","authors":"Dr. Chun-Rong Ye, Wen-Jian Wang, Dr. Wei Chen, Yonghong Xiao, Hai-Feng Zhang, Bing-Ling Dai, Si-Han Chen, Xu-Dong Wu, Mian Li, Prof. Xiao-Chun Huang","doi":"10.1002/anie.202109964","DOIUrl":null,"url":null,"abstract":"<p>Shape complementarity is a biological craft for precisely binding substrates at protein–protein interfaces. An analogy to such a function can be drawn conceptually for crystalline porous solids; yet the manifested entities are rare in reticular chemistry. The bottleneck-shaped pores carved out of a metal-organic framework, Zn(MIBA)<sub>2</sub> (aka. MAF-stu-13), can perfectly accommodate benzene molecules. Remarkably, its framework adapts to the optimal guest binding-the enhanced host–guest interactions in the neck in turn minimize the guest-guest repulsion in the pore to the extent it turns into attraction-as demonstrated by the combined X-ray structural and DFT computational studies. This adaptive material can be used for liquid-phase production of ultrahigh-purity (≥99 %) cyclohexane, achieving a balance between uptake capacity and separation selectivity and surpassing the performances of other porous and nonporous crystals reported recently (e.g. product purity 99.4 % vs. 97.5 % to date).</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anie.202109964","citationCount":"12","resultStr":"{\"title\":\"Harnessing Shape Complementarity for Upgraded Cyclohexane Purification through Adaptive Bottlenecked Pores in an Imidazole-Containing MOF\",\"authors\":\"Dr. Chun-Rong Ye, Wen-Jian Wang, Dr. Wei Chen, Yonghong Xiao, Hai-Feng Zhang, Bing-Ling Dai, Si-Han Chen, Xu-Dong Wu, Mian Li, Prof. Xiao-Chun Huang\",\"doi\":\"10.1002/anie.202109964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Shape complementarity is a biological craft for precisely binding substrates at protein–protein interfaces. An analogy to such a function can be drawn conceptually for crystalline porous solids; yet the manifested entities are rare in reticular chemistry. The bottleneck-shaped pores carved out of a metal-organic framework, Zn(MIBA)<sub>2</sub> (aka. MAF-stu-13), can perfectly accommodate benzene molecules. Remarkably, its framework adapts to the optimal guest binding-the enhanced host–guest interactions in the neck in turn minimize the guest-guest repulsion in the pore to the extent it turns into attraction-as demonstrated by the combined X-ray structural and DFT computational studies. This adaptive material can be used for liquid-phase production of ultrahigh-purity (≥99 %) cyclohexane, achieving a balance between uptake capacity and separation selectivity and surpassing the performances of other porous and nonporous crystals reported recently (e.g. product purity 99.4 % vs. 97.5 % to date).</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anie.202109964\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202109964\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202109964","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Harnessing Shape Complementarity for Upgraded Cyclohexane Purification through Adaptive Bottlenecked Pores in an Imidazole-Containing MOF
Shape complementarity is a biological craft for precisely binding substrates at protein–protein interfaces. An analogy to such a function can be drawn conceptually for crystalline porous solids; yet the manifested entities are rare in reticular chemistry. The bottleneck-shaped pores carved out of a metal-organic framework, Zn(MIBA)2 (aka. MAF-stu-13), can perfectly accommodate benzene molecules. Remarkably, its framework adapts to the optimal guest binding-the enhanced host–guest interactions in the neck in turn minimize the guest-guest repulsion in the pore to the extent it turns into attraction-as demonstrated by the combined X-ray structural and DFT computational studies. This adaptive material can be used for liquid-phase production of ultrahigh-purity (≥99 %) cyclohexane, achieving a balance between uptake capacity and separation selectivity and surpassing the performances of other porous and nonporous crystals reported recently (e.g. product purity 99.4 % vs. 97.5 % to date).
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.