{"title":"2011年日本东北大地震的十年教训","authors":"N. Uchida, R. Bürgmann","doi":"10.1029/2020RG000713","DOIUrl":null,"url":null,"abstract":"<p>The 2011 Mw 9.0 Tohoku-oki earthquake is one of the world's best-recorded ruptures. In the aftermath of this devastating event, it is important to learn from the complete record. We describe the state of knowledge of the megathrust earthquake generation process before the earthquake, and what has been learned in the decade since the historic event. Prior to 2011, there were a number of studies suggesting the potential of a great megathrust earthquake in NE Japan from geodesy, geology, seismology, geomorphology, and paleoseismology, but results from each field were not enough to enable a consensus assessment of the hazard. A transient unfastening of interplate coupling and increased seismicity were recognized before the earthquake, but did not lead to alerts. Since the mainshock, follow-up studies have (1) documented that the rupture occurred in an area with a large interplate slip deficit, (2) established large near-trench coseismic slip, (3) examined structural anomalies and fault-zone materials correlated with the coseismic slip, (4) clarified the historical and paleoseismic recurrence of M∼9 earthquakes, and (5) identified various kinds of possible precursors. The studies have also illuminated the heterogeneous distribution of coseismic rupture, aftershocks, slow earthquakes and aseismic afterslip, and the enduring viscoelastic response, which together make up the complex megathrust earthquake cycle. Given these scientific advances, the enhanced seismic hazard of an impending great earthquake can now be more accurately established, although we do not believe such an event could be predicted with confidence.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"59 2","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000713","citationCount":"30","resultStr":"{\"title\":\"A Decade of Lessons Learned from the 2011 Tohoku-Oki Earthquake\",\"authors\":\"N. Uchida, R. Bürgmann\",\"doi\":\"10.1029/2020RG000713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The 2011 Mw 9.0 Tohoku-oki earthquake is one of the world's best-recorded ruptures. In the aftermath of this devastating event, it is important to learn from the complete record. We describe the state of knowledge of the megathrust earthquake generation process before the earthquake, and what has been learned in the decade since the historic event. Prior to 2011, there were a number of studies suggesting the potential of a great megathrust earthquake in NE Japan from geodesy, geology, seismology, geomorphology, and paleoseismology, but results from each field were not enough to enable a consensus assessment of the hazard. A transient unfastening of interplate coupling and increased seismicity were recognized before the earthquake, but did not lead to alerts. Since the mainshock, follow-up studies have (1) documented that the rupture occurred in an area with a large interplate slip deficit, (2) established large near-trench coseismic slip, (3) examined structural anomalies and fault-zone materials correlated with the coseismic slip, (4) clarified the historical and paleoseismic recurrence of M∼9 earthquakes, and (5) identified various kinds of possible precursors. The studies have also illuminated the heterogeneous distribution of coseismic rupture, aftershocks, slow earthquakes and aseismic afterslip, and the enduring viscoelastic response, which together make up the complex megathrust earthquake cycle. Given these scientific advances, the enhanced seismic hazard of an impending great earthquake can now be more accurately established, although we do not believe such an event could be predicted with confidence.</p>\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"59 2\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000713\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2020RG000713\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2020RG000713","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A Decade of Lessons Learned from the 2011 Tohoku-Oki Earthquake
The 2011 Mw 9.0 Tohoku-oki earthquake is one of the world's best-recorded ruptures. In the aftermath of this devastating event, it is important to learn from the complete record. We describe the state of knowledge of the megathrust earthquake generation process before the earthquake, and what has been learned in the decade since the historic event. Prior to 2011, there were a number of studies suggesting the potential of a great megathrust earthquake in NE Japan from geodesy, geology, seismology, geomorphology, and paleoseismology, but results from each field were not enough to enable a consensus assessment of the hazard. A transient unfastening of interplate coupling and increased seismicity were recognized before the earthquake, but did not lead to alerts. Since the mainshock, follow-up studies have (1) documented that the rupture occurred in an area with a large interplate slip deficit, (2) established large near-trench coseismic slip, (3) examined structural anomalies and fault-zone materials correlated with the coseismic slip, (4) clarified the historical and paleoseismic recurrence of M∼9 earthquakes, and (5) identified various kinds of possible precursors. The studies have also illuminated the heterogeneous distribution of coseismic rupture, aftershocks, slow earthquakes and aseismic afterslip, and the enduring viscoelastic response, which together make up the complex megathrust earthquake cycle. Given these scientific advances, the enhanced seismic hazard of an impending great earthquake can now be more accurately established, although we do not believe such an event could be predicted with confidence.
期刊介绍:
Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.