Eric A. Margulies, Claire E. Miller, Yilei Wu, Lin Ma, George C. Schatz, Ryan M. Young, Michael R. Wasielewski
{"title":"通过控制π堆叠共价三烯二亚胺二聚体的分子内电荷转移实现单子裂变","authors":"Eric A. Margulies, Claire E. Miller, Yilei Wu, Lin Ma, George C. Schatz, Ryan M. Young, Michael R. Wasielewski","doi":"10.1038/nchem.2589","DOIUrl":null,"url":null,"abstract":"When an assembly of two or more molecules absorbs a photon to form a singlet exciton, and the energetics and intermolecular interactions are favourable, the singlet exciton can rapidly and spontaneously produce two triplet excitons by singlet fission. To understand this process is important because it may prove to be technologically significant for enhancing solar-cell performance. Theory strongly suggests that charge-transfer states are involved in singlet fission, but their role has remained an intriguing puzzle and, up until now, no molecular system has provided clear evidence for such a state. Here we describe a terrylenediimide dimer that forms a charge-transfer state in a few picoseconds in polar solvents, and undergoes equally rapid, high-yield singlet fission in nonpolar solvents. These results show that adjusting the charge-transfer-state energy relative to those of the exciton states can serve to either inhibit or promote singlet fission. Singlet fission in assemblies of molecular chromophores offers a promising route to improving solar cell efficiencies, but its mechanism is not fully understood. Now, a series of covalently bound π-stacked terrylenediimide dimers have been studied to elucidate the role of interchromophore charge-transfer states in the mechanism of singlet fission.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"8 12","pages":"1120-1125"},"PeriodicalIF":19.2000,"publicationDate":"2016-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/nchem.2589","citationCount":"220","resultStr":"{\"title\":\"Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers\",\"authors\":\"Eric A. Margulies, Claire E. Miller, Yilei Wu, Lin Ma, George C. Schatz, Ryan M. Young, Michael R. Wasielewski\",\"doi\":\"10.1038/nchem.2589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When an assembly of two or more molecules absorbs a photon to form a singlet exciton, and the energetics and intermolecular interactions are favourable, the singlet exciton can rapidly and spontaneously produce two triplet excitons by singlet fission. To understand this process is important because it may prove to be technologically significant for enhancing solar-cell performance. Theory strongly suggests that charge-transfer states are involved in singlet fission, but their role has remained an intriguing puzzle and, up until now, no molecular system has provided clear evidence for such a state. Here we describe a terrylenediimide dimer that forms a charge-transfer state in a few picoseconds in polar solvents, and undergoes equally rapid, high-yield singlet fission in nonpolar solvents. These results show that adjusting the charge-transfer-state energy relative to those of the exciton states can serve to either inhibit or promote singlet fission. Singlet fission in assemblies of molecular chromophores offers a promising route to improving solar cell efficiencies, but its mechanism is not fully understood. Now, a series of covalently bound π-stacked terrylenediimide dimers have been studied to elucidate the role of interchromophore charge-transfer states in the mechanism of singlet fission.\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"8 12\",\"pages\":\"1120-1125\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2016-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/nchem.2589\",\"citationCount\":\"220\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/nchem.2589\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/nchem.2589","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers
When an assembly of two or more molecules absorbs a photon to form a singlet exciton, and the energetics and intermolecular interactions are favourable, the singlet exciton can rapidly and spontaneously produce two triplet excitons by singlet fission. To understand this process is important because it may prove to be technologically significant for enhancing solar-cell performance. Theory strongly suggests that charge-transfer states are involved in singlet fission, but their role has remained an intriguing puzzle and, up until now, no molecular system has provided clear evidence for such a state. Here we describe a terrylenediimide dimer that forms a charge-transfer state in a few picoseconds in polar solvents, and undergoes equally rapid, high-yield singlet fission in nonpolar solvents. These results show that adjusting the charge-transfer-state energy relative to those of the exciton states can serve to either inhibit or promote singlet fission. Singlet fission in assemblies of molecular chromophores offers a promising route to improving solar cell efficiencies, but its mechanism is not fully understood. Now, a series of covalently bound π-stacked terrylenediimide dimers have been studied to elucidate the role of interchromophore charge-transfer states in the mechanism of singlet fission.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.