高导电性、高机械强度Ti3C2Tx MXene的快速高效无水合成

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2022-09-07 DOI:10.1002/smll.202203767
Taegon Oh, Seungjun Lee, Hyerim Kim, Tae Yun Ko, Seon Joon Kim, Chong Min Koo
{"title":"高导电性、高机械强度Ti3C2Tx MXene的快速高效无水合成","authors":"Taegon Oh,&nbsp;Seungjun Lee,&nbsp;Hyerim Kim,&nbsp;Tae Yun Ko,&nbsp;Seon Joon Kim,&nbsp;Chong Min Koo","doi":"10.1002/smll.202203767","DOIUrl":null,"url":null,"abstract":"<p>2D transition metal carbides or nitrides (MXenes) have attracted considerable attention from materials scientists and engineers owing to their physicochemical properties. Currently, MXenes are synthesized from MAX-phase precursors using aqueous HF. Here, in order to enhance the production of MXenes, an anhydrous etching solution is proposed, consisting of dimethylsulfoxide as solvent with its high boiling point, NH<sub>4</sub>HF<sub>2</sub> as an etchant, CH<sub>3</sub>SO<sub>3</sub>H as an acid, and NH<sub>4</sub>PF<sub>6</sub> as an intercalant. The reaction temperature can be increased up to 100 °C to accelerate the etching and delamination of Ti<sub>3</sub>AlC<sub>2</sub> MAX crystals; in addition, the destructive side reaction of the produced Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene is suppressed in the etchant. Consequently, the etching reaction is completed in 4 h at 100 °C and produces high-quality monolayer Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> with an electrical conductivity of 8200 S cm<sup>−1</sup> and yield of over 70%. The Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene fabricated via this modified synthesis exhibits different surface structures and properties arising from more F-terminations than those of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> synthesized in aqueous HF<sub>2</sub>T. The atypical surface structure of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene results in an exceptionally high ultimate tensile strength (167 ± 8 MPa), which is five times larger than those of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXenes synthesized in aqueous HF solution (31.7 ± 7.8 MPa).</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"18 46","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast and High-Yield Anhydrous Synthesis of Ti3C2Tx MXene with High Electrical Conductivity and Exceptional Mechanical Strength\",\"authors\":\"Taegon Oh,&nbsp;Seungjun Lee,&nbsp;Hyerim Kim,&nbsp;Tae Yun Ko,&nbsp;Seon Joon Kim,&nbsp;Chong Min Koo\",\"doi\":\"10.1002/smll.202203767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>2D transition metal carbides or nitrides (MXenes) have attracted considerable attention from materials scientists and engineers owing to their physicochemical properties. Currently, MXenes are synthesized from MAX-phase precursors using aqueous HF. Here, in order to enhance the production of MXenes, an anhydrous etching solution is proposed, consisting of dimethylsulfoxide as solvent with its high boiling point, NH<sub>4</sub>HF<sub>2</sub> as an etchant, CH<sub>3</sub>SO<sub>3</sub>H as an acid, and NH<sub>4</sub>PF<sub>6</sub> as an intercalant. The reaction temperature can be increased up to 100 °C to accelerate the etching and delamination of Ti<sub>3</sub>AlC<sub>2</sub> MAX crystals; in addition, the destructive side reaction of the produced Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene is suppressed in the etchant. Consequently, the etching reaction is completed in 4 h at 100 °C and produces high-quality monolayer Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> with an electrical conductivity of 8200 S cm<sup>−1</sup> and yield of over 70%. The Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene fabricated via this modified synthesis exhibits different surface structures and properties arising from more F-terminations than those of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> synthesized in aqueous HF<sub>2</sub>T. The atypical surface structure of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene results in an exceptionally high ultimate tensile strength (167 ± 8 MPa), which is five times larger than those of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXenes synthesized in aqueous HF solution (31.7 ± 7.8 MPa).</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"18 46\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202203767\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202203767","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

二维过渡金属碳化物或氮化物(MXenes)由于其物理化学性质引起了材料科学家和工程师的广泛关注。目前,MXenes是用水溶液HF从max相前体合成的。为了提高MXenes的产量,本文提出了一种无水蚀刻溶液,该溶液由高沸点的二甲亚砜为溶剂,NH4HF2为蚀刻剂,CH3SO3H为酸,NH4PF6为插剂组成。反应温度可提高到100℃,加速了Ti3AlC2 MAX晶体的刻蚀和分层;此外,所制备的Ti3C2Tx MXene的破坏性副反应在蚀刻剂中被抑制。因此,在100°C下,蚀刻反应在4小时内完成,并产生高质量的单层Ti3C2Tx,电导率为8200 S cm−1,收率超过70%。通过该方法制备的Ti3C2Tx MXene具有不同的表面结构和性能,这是因为在水溶液中合成的Ti3C2Tx具有更多的f端。Ti3C2Tx MXene的非典型表面结构使其具有极高的抗拉强度(167±8 MPa),是在HF水溶液中合成的Ti3C2Tx MXene(31.7±7.8 MPa)的5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast and High-Yield Anhydrous Synthesis of Ti3C2Tx MXene with High Electrical Conductivity and Exceptional Mechanical Strength

Fast and High-Yield Anhydrous Synthesis of Ti3C2Tx MXene with High Electrical Conductivity and Exceptional Mechanical Strength

2D transition metal carbides or nitrides (MXenes) have attracted considerable attention from materials scientists and engineers owing to their physicochemical properties. Currently, MXenes are synthesized from MAX-phase precursors using aqueous HF. Here, in order to enhance the production of MXenes, an anhydrous etching solution is proposed, consisting of dimethylsulfoxide as solvent with its high boiling point, NH4HF2 as an etchant, CH3SO3H as an acid, and NH4PF6 as an intercalant. The reaction temperature can be increased up to 100 °C to accelerate the etching and delamination of Ti3AlC2 MAX crystals; in addition, the destructive side reaction of the produced Ti3C2Tx MXene is suppressed in the etchant. Consequently, the etching reaction is completed in 4 h at 100 °C and produces high-quality monolayer Ti3C2Tx with an electrical conductivity of 8200 S cm−1 and yield of over 70%. The Ti3C2Tx MXene fabricated via this modified synthesis exhibits different surface structures and properties arising from more F-terminations than those of Ti3C2Tx synthesized in aqueous HF2T. The atypical surface structure of Ti3C2Tx MXene results in an exceptionally high ultimate tensile strength (167 ± 8 MPa), which is five times larger than those of Ti3C2Tx MXenes synthesized in aqueous HF solution (31.7 ± 7.8 MPa).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信