人工智能减少中国 5G 网络的碳排放

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
{"title":"人工智能减少中国 5G 网络的碳排放","authors":"","doi":"10.1038/s41893-023-01208-3","DOIUrl":null,"url":null,"abstract":"A data-driven framework has been developed to assess the carbon emissions of mobile networks in China, revealing that the launch of 5G networks leads to a decline in carbon efficiency. A deep reinforcement learning algorithm, DeepEnergy, is proposed to increase the carbon efficiency of mobile networks and reduce carbon emissions.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"6 12","pages":"1522-1523"},"PeriodicalIF":25.7000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence for reducing the carbon emissions of 5G networks in China\",\"authors\":\"\",\"doi\":\"10.1038/s41893-023-01208-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A data-driven framework has been developed to assess the carbon emissions of mobile networks in China, revealing that the launch of 5G networks leads to a decline in carbon efficiency. A deep reinforcement learning algorithm, DeepEnergy, is proposed to increase the carbon efficiency of mobile networks and reduce carbon emissions.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"6 12\",\"pages\":\"1522-1523\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-023-01208-3\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-023-01208-3","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个数据驱动的框架来评估中国移动网络的碳排放,发现 5G 网络的推出导致了碳效率的下降。研究提出了一种深度强化学习算法--DeepEnergy,以提高移动网络的碳效率并减少碳排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence for reducing the carbon emissions of 5G networks in China

Artificial intelligence for reducing the carbon emissions of 5G networks in China
A data-driven framework has been developed to assess the carbon emissions of mobile networks in China, revealing that the launch of 5G networks leads to a decline in carbon efficiency. A deep reinforcement learning algorithm, DeepEnergy, is proposed to increase the carbon efficiency of mobile networks and reduce carbon emissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信