金属有机框架- mxene纳米结构用于快速响应和超稳定的电子离子人造肌肉

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mousumi Garai, Manmatha Mahato, Sanghee Nam, Eunji Kim, Darae Seo, Yonghee Lee, Van Hiep Nguyen, Saewoong Oh, Pradeep Sambyal, Hyunjoon Yoo, Ashhad Kamal Taseer, Sheraz Ali Syed, Hee Han, Chi Won Ahn, Jaehwan Kim, Il-Kwon Oh
{"title":"金属有机框架- mxene纳米结构用于快速响应和超稳定的电子离子人造肌肉","authors":"Mousumi Garai,&nbsp;Manmatha Mahato,&nbsp;Sanghee Nam,&nbsp;Eunji Kim,&nbsp;Darae Seo,&nbsp;Yonghee Lee,&nbsp;Van Hiep Nguyen,&nbsp;Saewoong Oh,&nbsp;Pradeep Sambyal,&nbsp;Hyunjoon Yoo,&nbsp;Ashhad Kamal Taseer,&nbsp;Sheraz Ali Syed,&nbsp;Hee Han,&nbsp;Chi Won Ahn,&nbsp;Jaehwan Kim,&nbsp;Il-Kwon Oh","doi":"10.1002/adfm.202212252","DOIUrl":null,"url":null,"abstract":"<p>Electro-ionic soft actuators, capable of continuous deformations replacing non-compliant rigid mechanical components, attract increasing interest in the field of next-generation metaverse interfaces and soft robotics. Here, a novel MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) electrode anchoring manganese-based 1,3,5-benzenetricarboxylate metal-organic framework (MnBTC) for ultrastable electro-ionic artificial muscles is reported. By a facile supramolecular self-assembly, the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MnBTC hybrid nanoarchitecture forms coordinate bond, hydrogen bond, and hydrophilic interaction with the conducting polymer of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), resulting in a mechanically flexible and electro-ionically active electrode. The superior electrical and electrochemical performances of the electrode stem from the synergistic effects between intrinsically hierarchical nanoarchitecture of MnBTC and rapid electron transport behavior of Mxene, leading to fast diffusion and accommodation of ions in the ion-exchangeable membrane. The developed artificial muscle based on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MnBTC is found to exhibit high bending displacement (12.5 mm) and ultrafast response time (0.77 s) under a low driving voltage (0.5 V), along with wide frequency response (0.1–10 Hz) and exceptional stability (98% retention at 43,200 s) without any distortion of actuation performance. Furthermore, the designed electro-active artificial muscle is successfully used to demonstrate mimicry of eye motions including eyelid blinking and eyeball movement in a doll.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 10","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Metal Organic Framework-MXene Nanoarchitecture for Fast Responsive and Ultra-Stable Electro-Ionic Artificial Muscles\",\"authors\":\"Mousumi Garai,&nbsp;Manmatha Mahato,&nbsp;Sanghee Nam,&nbsp;Eunji Kim,&nbsp;Darae Seo,&nbsp;Yonghee Lee,&nbsp;Van Hiep Nguyen,&nbsp;Saewoong Oh,&nbsp;Pradeep Sambyal,&nbsp;Hyunjoon Yoo,&nbsp;Ashhad Kamal Taseer,&nbsp;Sheraz Ali Syed,&nbsp;Hee Han,&nbsp;Chi Won Ahn,&nbsp;Jaehwan Kim,&nbsp;Il-Kwon Oh\",\"doi\":\"10.1002/adfm.202212252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electro-ionic soft actuators, capable of continuous deformations replacing non-compliant rigid mechanical components, attract increasing interest in the field of next-generation metaverse interfaces and soft robotics. Here, a novel MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) electrode anchoring manganese-based 1,3,5-benzenetricarboxylate metal-organic framework (MnBTC) for ultrastable electro-ionic artificial muscles is reported. By a facile supramolecular self-assembly, the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MnBTC hybrid nanoarchitecture forms coordinate bond, hydrogen bond, and hydrophilic interaction with the conducting polymer of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), resulting in a mechanically flexible and electro-ionically active electrode. The superior electrical and electrochemical performances of the electrode stem from the synergistic effects between intrinsically hierarchical nanoarchitecture of MnBTC and rapid electron transport behavior of Mxene, leading to fast diffusion and accommodation of ions in the ion-exchangeable membrane. The developed artificial muscle based on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MnBTC is found to exhibit high bending displacement (12.5 mm) and ultrafast response time (0.77 s) under a low driving voltage (0.5 V), along with wide frequency response (0.1–10 Hz) and exceptional stability (98% retention at 43,200 s) without any distortion of actuation performance. Furthermore, the designed electro-active artificial muscle is successfully used to demonstrate mimicry of eye motions including eyelid blinking and eyeball movement in a doll.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"33 10\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2022-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202212252\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202212252","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

离子软致动器能够连续变形,取代不兼容的刚性机械部件,在下一代元宇宙界面和软机器人领域引起了越来越多的兴趣。本文报道了一种新型的MXene (Ti3C2Tx)电极锚定锰基1,3,5-苯三羧酸盐金属有机骨架(MnBTC)用于超稳定电离子人造肌肉。通过简单的超分子自组装,Ti3C2Tx-MnBTC杂化纳米结构与导电聚合物聚(3,4-乙烯二氧噻吩)聚苯磺酸盐(PEDOT:PSS)形成配位键、氢键和亲水相互作用,形成机械柔性和电离子活性的电极。该电极优异的电学和电化学性能源于MnBTC固有的分层纳米结构与Mxene的快速电子传递行为之间的协同作用,导致离子在离子交换膜中的快速扩散和容纳。在低驱动电压(0.5 V)下,基于Ti3C2Tx-MnBTC的人造肌肉具有高弯曲位移(12.5 mm)和超快响应时间(0.77 s),宽频率响应(0.1-10 Hz)和优异的稳定性(在43,200 s下保持98%),并且没有任何驱动性能畸变。此外,所设计的电活动人造肌肉成功地用于模拟玩偶的眼球运动,包括眼睑眨眼和眼球运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal Organic Framework-MXene Nanoarchitecture for Fast Responsive and Ultra-Stable Electro-Ionic Artificial Muscles

Metal Organic Framework-MXene Nanoarchitecture for Fast Responsive and Ultra-Stable Electro-Ionic Artificial Muscles

Electro-ionic soft actuators, capable of continuous deformations replacing non-compliant rigid mechanical components, attract increasing interest in the field of next-generation metaverse interfaces and soft robotics. Here, a novel MXene (Ti3C2Tx) electrode anchoring manganese-based 1,3,5-benzenetricarboxylate metal-organic framework (MnBTC) for ultrastable electro-ionic artificial muscles is reported. By a facile supramolecular self-assembly, the Ti3C2Tx-MnBTC hybrid nanoarchitecture forms coordinate bond, hydrogen bond, and hydrophilic interaction with the conducting polymer of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), resulting in a mechanically flexible and electro-ionically active electrode. The superior electrical and electrochemical performances of the electrode stem from the synergistic effects between intrinsically hierarchical nanoarchitecture of MnBTC and rapid electron transport behavior of Mxene, leading to fast diffusion and accommodation of ions in the ion-exchangeable membrane. The developed artificial muscle based on Ti3C2Tx-MnBTC is found to exhibit high bending displacement (12.5 mm) and ultrafast response time (0.77 s) under a low driving voltage (0.5 V), along with wide frequency response (0.1–10 Hz) and exceptional stability (98% retention at 43,200 s) without any distortion of actuation performance. Furthermore, the designed electro-active artificial muscle is successfully used to demonstrate mimicry of eye motions including eyelid blinking and eyeball movement in a doll.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信