Ruochen Zhang, Dr. Yang Feng, Dr. Youxuan Ni, Beidou Zhong, Maoyu Peng, Dr. Tianjiang Sun, Dr. Shan Chen, Prof. Huan Wang, Prof. Zhanliang Tao, Prof. Kai Zhang
{"title":"具有目标分布脱溶位点的双功能界面相和定向沉积离子通量的可持续锌阳极","authors":"Ruochen Zhang, Dr. Yang Feng, Dr. Youxuan Ni, Beidou Zhong, Maoyu Peng, Dr. Tianjiang Sun, Dr. Shan Chen, Prof. Huan Wang, Prof. Zhanliang Tao, Prof. Kai Zhang","doi":"10.1002/anie.202304503","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc batteries (AZBs) feature high safety and low cost, but intricate anodic side reactions and dendrite growth severely restrict their commercialization. Herein, ethylenediaminetetraacetic acid (EDTA) grafted metal organic framework (MOF-E) is proposed as a dually-functional anodic interphase for sustainable Zn anode. Specifically, the target-distributed EDTA serves as an ion-trapped tentacle to accelerate the desolvation and ionic transport by powerful chemical coordination, while the MOFs offer suitable ionic channels to induce oriented deposition. As a result, MOF-E interphase fundamentally suppresses side reactions and guides horizontally arranged Zn deposition with (002) preferred orientations. The Zn|MOF-E@Cu cell exhibits a markedly improved Coulombic efficiency of 99.7 % over 2500 cycles, and the MOF-E@Zn|KVOH (KV<sub>12</sub>O<sub>30-y</sub> ⋅ nH<sub>2</sub>O) cell yields a steady circulation of 5000 [email protected] % at 8 A g<sup>−1</sup>.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"62 25","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Bifunctional Interphase with Target-Distributed Desolvation Sites and Directionally Depositional Ion Flux for Sustainable Zinc Anode\",\"authors\":\"Ruochen Zhang, Dr. Yang Feng, Dr. Youxuan Ni, Beidou Zhong, Maoyu Peng, Dr. Tianjiang Sun, Dr. Shan Chen, Prof. Huan Wang, Prof. Zhanliang Tao, Prof. Kai Zhang\",\"doi\":\"10.1002/anie.202304503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous zinc batteries (AZBs) feature high safety and low cost, but intricate anodic side reactions and dendrite growth severely restrict their commercialization. Herein, ethylenediaminetetraacetic acid (EDTA) grafted metal organic framework (MOF-E) is proposed as a dually-functional anodic interphase for sustainable Zn anode. Specifically, the target-distributed EDTA serves as an ion-trapped tentacle to accelerate the desolvation and ionic transport by powerful chemical coordination, while the MOFs offer suitable ionic channels to induce oriented deposition. As a result, MOF-E interphase fundamentally suppresses side reactions and guides horizontally arranged Zn deposition with (002) preferred orientations. The Zn|MOF-E@Cu cell exhibits a markedly improved Coulombic efficiency of 99.7 % over 2500 cycles, and the MOF-E@Zn|KVOH (KV<sub>12</sub>O<sub>30-y</sub> ⋅ nH<sub>2</sub>O) cell yields a steady circulation of 5000 [email protected] % at 8 A g<sup>−1</sup>.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"62 25\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202304503\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202304503","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11
摘要
水锌电池具有高安全性和低成本的特点,但复杂的阳极副反应和枝晶生长严重制约了其商业化。本文提出了乙二胺四乙酸(EDTA)接枝金属有机骨架(MOF-E)作为可持续锌阳极的双功能阳极间相。具体来说,目标分布的EDTA充当离子捕获触手,通过强大的化学配位加速脱溶和离子传输,而mof则提供合适的离子通道来诱导定向沉积。因此,MOF-E间相从根本上抑制了副反应,并以(002)优先取向引导水平排列的Zn沉积。在2500次循环中,Zn|MOF-E@Cu电池的库伦效率显著提高了99.7%,而MOF-E@Zn|KVOH (KV12O30-y⋅nH2O)电池在8 a g−1下的稳定循环率为5000 [email protected] %。
Bifunctional Interphase with Target-Distributed Desolvation Sites and Directionally Depositional Ion Flux for Sustainable Zinc Anode
Aqueous zinc batteries (AZBs) feature high safety and low cost, but intricate anodic side reactions and dendrite growth severely restrict their commercialization. Herein, ethylenediaminetetraacetic acid (EDTA) grafted metal organic framework (MOF-E) is proposed as a dually-functional anodic interphase for sustainable Zn anode. Specifically, the target-distributed EDTA serves as an ion-trapped tentacle to accelerate the desolvation and ionic transport by powerful chemical coordination, while the MOFs offer suitable ionic channels to induce oriented deposition. As a result, MOF-E interphase fundamentally suppresses side reactions and guides horizontally arranged Zn deposition with (002) preferred orientations. The Zn|MOF-E@Cu cell exhibits a markedly improved Coulombic efficiency of 99.7 % over 2500 cycles, and the MOF-E@Zn|KVOH (KV12O30-y ⋅ nH2O) cell yields a steady circulation of 5000 [email protected] % at 8 A g−1.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.