{"title":"3D打印聚己二酸丁二酯(PBAT)/含铌生物活性玻璃(BAGNb)支架:复合材料的表征、体外生物活性和体内骨修复","authors":"Lucienne Miranda Ulbrich, Gabriela de Souza Balbinot, Gabriela Loewen Brotto, Vicente Castelo Branco Leitune, Rosane Michele Duarte Soares, Fabricio Mezzomo Collares, Deise Ponzoni","doi":"10.1002/term.3276","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to produce poly(butylene adipate-co-terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) composites scaffolds produced by fused deposition modeling (FDM) printing and evaluate their physicochemical and biological properties in vitro and in vivo. The composite filaments were produced by melt-extrusion with the addition of 10 wt% of BAGNb (PBAT/BAGNb). Filaments without BAGNb were produced as the control group (PBAT). The filaments were characterized and were used to produce 3D-printed scaffolds using FDM. The scaffolds' structure and surface properties were assessed. In vitro cell, proliferation, and cell mineralization analysis were performed. In vivo data was obtained in the rat femur model (<i>n</i> = 10), and the bone repair was assessed after 15, 30, and 60 postoperative days. The printed structures presented 69.81% porosity for the PBAT/BAGNb group and 74.54% for the PBAT group. Higher cell mineralization was observed for the PBAT/BAGNb group. The in vivo data showed that the PBAT/BAGNb presented new bone formation comparable to positive controls. The combination of PBAT and BAGNb in 3D-printed scaffolds may be an alternative to produce bioactive materials with controllable shapes and properties for bone regeneration treatments.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 3","pages":"267-278"},"PeriodicalIF":3.1000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"3D printing of poly(butylene adipate-co-terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) scaffolds: Characterization of composites, in vitro bioactivity, and in vivo bone repair\",\"authors\":\"Lucienne Miranda Ulbrich, Gabriela de Souza Balbinot, Gabriela Loewen Brotto, Vicente Castelo Branco Leitune, Rosane Michele Duarte Soares, Fabricio Mezzomo Collares, Deise Ponzoni\",\"doi\":\"10.1002/term.3276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to produce poly(butylene adipate-co-terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) composites scaffolds produced by fused deposition modeling (FDM) printing and evaluate their physicochemical and biological properties in vitro and in vivo. The composite filaments were produced by melt-extrusion with the addition of 10 wt% of BAGNb (PBAT/BAGNb). Filaments without BAGNb were produced as the control group (PBAT). The filaments were characterized and were used to produce 3D-printed scaffolds using FDM. The scaffolds' structure and surface properties were assessed. In vitro cell, proliferation, and cell mineralization analysis were performed. In vivo data was obtained in the rat femur model (<i>n</i> = 10), and the bone repair was assessed after 15, 30, and 60 postoperative days. The printed structures presented 69.81% porosity for the PBAT/BAGNb group and 74.54% for the PBAT group. Higher cell mineralization was observed for the PBAT/BAGNb group. The in vivo data showed that the PBAT/BAGNb presented new bone formation comparable to positive controls. The combination of PBAT and BAGNb in 3D-printed scaffolds may be an alternative to produce bioactive materials with controllable shapes and properties for bone regeneration treatments.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 3\",\"pages\":\"267-278\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3276\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3276","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
3D printing of poly(butylene adipate-co-terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) scaffolds: Characterization of composites, in vitro bioactivity, and in vivo bone repair
This study aimed to produce poly(butylene adipate-co-terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) composites scaffolds produced by fused deposition modeling (FDM) printing and evaluate their physicochemical and biological properties in vitro and in vivo. The composite filaments were produced by melt-extrusion with the addition of 10 wt% of BAGNb (PBAT/BAGNb). Filaments without BAGNb were produced as the control group (PBAT). The filaments were characterized and were used to produce 3D-printed scaffolds using FDM. The scaffolds' structure and surface properties were assessed. In vitro cell, proliferation, and cell mineralization analysis were performed. In vivo data was obtained in the rat femur model (n = 10), and the bone repair was assessed after 15, 30, and 60 postoperative days. The printed structures presented 69.81% porosity for the PBAT/BAGNb group and 74.54% for the PBAT group. Higher cell mineralization was observed for the PBAT/BAGNb group. The in vivo data showed that the PBAT/BAGNb presented new bone formation comparable to positive controls. The combination of PBAT and BAGNb in 3D-printed scaffolds may be an alternative to produce bioactive materials with controllable shapes and properties for bone regeneration treatments.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.