Long YAN , Hui-Yong LIU , Ying-Hui LI , Meng-Chen ZHANG , Li-Juan QIU
{"title":"影响BC1F1大小的因素对全基因组渐渗系发育的影响","authors":"Long YAN , Hui-Yong LIU , Ying-Hui LI , Meng-Chen ZHANG , Li-Juan QIU","doi":"10.1016/S1875-2780(11)60097-7","DOIUrl":null,"url":null,"abstract":"<div><p>Introgression lines are important genetic materials for genetics study and breeding. Development of those lines involves cross and backcross processes between recipient and donor parents. The population size of BC<sub>1</sub>F<sub>1</sub> is a critical parameter for fully covering donor genome and successfully obtaining desired introgression lines. However, the minimum sufficient number of BC<sub>1</sub>F<sub>1</sub> plants is unknown for each species and cannot be obtained experimentally. A computer program was developed by simulating the recombination process during meiosis to define the ideal BC<sub>1</sub>F<sub>1</sub> population size. The reliability of the program was confirmed by mathematics and experimental data. Three factors including linkage group number, linkage group length, and gene density were analyzed, and all of them had positive relation with the size of BC<sub>1</sub>F<sub>1</sub> population. The population size increased from 6.06 to 9.49 when the linkage number increased from 5 to 40. The population size was 7.14 when the linkage group length was 80 cM, while it became 8.64 when the length was 200 cM. The population size was 7.65 with the density of 20 cM per gene and 8.22 with 10 cM per gene. The BC<sub>1</sub>F<sub>1</sub> population sizes of rice (<em>Oryza sativa</em> L.), wheat (<em>Triticum aestivum</em> L.), maize (<em>Zea mays</em> L.), and soybean (<em>Glycine max</em> L. Merr.) were predicted to be 12, 13, 14–15, and 13, respectively, by the program with 95% confidential level.</p></div>","PeriodicalId":7085,"journal":{"name":"Acta Agronomica Sinica","volume":"38 1","pages":"Pages 50-54"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-2780(11)60097-7","citationCount":"0","resultStr":"{\"title\":\"Factors Affected BC1F1 Size for Development of Genome-Wide Introgression Lines\",\"authors\":\"Long YAN , Hui-Yong LIU , Ying-Hui LI , Meng-Chen ZHANG , Li-Juan QIU\",\"doi\":\"10.1016/S1875-2780(11)60097-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Introgression lines are important genetic materials for genetics study and breeding. Development of those lines involves cross and backcross processes between recipient and donor parents. The population size of BC<sub>1</sub>F<sub>1</sub> is a critical parameter for fully covering donor genome and successfully obtaining desired introgression lines. However, the minimum sufficient number of BC<sub>1</sub>F<sub>1</sub> plants is unknown for each species and cannot be obtained experimentally. A computer program was developed by simulating the recombination process during meiosis to define the ideal BC<sub>1</sub>F<sub>1</sub> population size. The reliability of the program was confirmed by mathematics and experimental data. Three factors including linkage group number, linkage group length, and gene density were analyzed, and all of them had positive relation with the size of BC<sub>1</sub>F<sub>1</sub> population. The population size increased from 6.06 to 9.49 when the linkage number increased from 5 to 40. The population size was 7.14 when the linkage group length was 80 cM, while it became 8.64 when the length was 200 cM. The population size was 7.65 with the density of 20 cM per gene and 8.22 with 10 cM per gene. The BC<sub>1</sub>F<sub>1</sub> population sizes of rice (<em>Oryza sativa</em> L.), wheat (<em>Triticum aestivum</em> L.), maize (<em>Zea mays</em> L.), and soybean (<em>Glycine max</em> L. Merr.) were predicted to be 12, 13, 14–15, and 13, respectively, by the program with 95% confidential level.</p></div>\",\"PeriodicalId\":7085,\"journal\":{\"name\":\"Acta Agronomica Sinica\",\"volume\":\"38 1\",\"pages\":\"Pages 50-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1875-2780(11)60097-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Agronomica Sinica\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875278011600977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agronomica Sinica","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875278011600977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
渐渗系是遗传研究和育种的重要遗传材料。这些细胞系的发育涉及受体和供体亲本之间的交叉和回交过程。BC1F1的群体大小是完全覆盖供体基因组并成功获得所需渗入系的关键参数。然而,每种植物的BC1F1最小足够数量是未知的,也无法通过实验获得。通过计算机程序模拟减数分裂重组过程,确定BC1F1理想群体大小。通过数学和实验数据验证了程序的可靠性。对连锁群数、连锁群长度、基因密度3个因素进行分析,均与BC1F1群体大小呈正相关。当连锁数从5个增加到40个时,种群大小从6.06增加到9.49。当连锁群长度为80 cM时,群体大小为7.14,当连锁群长度为200 cM时,群体大小为8.64。种群大小分别为7.65个和8.22个,每个基因密度为20 cM和10 cM。该程序预测水稻(Oryza sativa L.)、小麦(Triticum aestivum L.)、玉米(Zea mays L.)和大豆(Glycine max L. Merr.)的BC1F1群体大小分别为12、13、14-15和13,保密水平为95%。
Factors Affected BC1F1 Size for Development of Genome-Wide Introgression Lines
Introgression lines are important genetic materials for genetics study and breeding. Development of those lines involves cross and backcross processes between recipient and donor parents. The population size of BC1F1 is a critical parameter for fully covering donor genome and successfully obtaining desired introgression lines. However, the minimum sufficient number of BC1F1 plants is unknown for each species and cannot be obtained experimentally. A computer program was developed by simulating the recombination process during meiosis to define the ideal BC1F1 population size. The reliability of the program was confirmed by mathematics and experimental data. Three factors including linkage group number, linkage group length, and gene density were analyzed, and all of them had positive relation with the size of BC1F1 population. The population size increased from 6.06 to 9.49 when the linkage number increased from 5 to 40. The population size was 7.14 when the linkage group length was 80 cM, while it became 8.64 when the length was 200 cM. The population size was 7.65 with the density of 20 cM per gene and 8.22 with 10 cM per gene. The BC1F1 population sizes of rice (Oryza sativa L.), wheat (Triticum aestivum L.), maize (Zea mays L.), and soybean (Glycine max L. Merr.) were predicted to be 12, 13, 14–15, and 13, respectively, by the program with 95% confidential level.