David M. Rand, Joaquin C. B. Nunez, Shawn Williams, Stephen Rong, John T. Burley, Kimberly B. Neil, Adam N. Spierer, Wilson McKerrow, David S. Johnson, Yevgeniy Raynes, Thomas J. Fayton, Nicholas Skvir, David A. Ferranti, Maya Greenhill Zeff, Amanda Lyons, Naima Okami, David M. Morgan, Kealohanuiopuna Kinney, Bianca R. P. Brown, Anne E. Giblin, Zoe G. Cardon
{"title":"从吸虫-片足类动物系统的转录分析推断,寄生虫操纵宿主表型","authors":"David M. Rand, Joaquin C. B. Nunez, Shawn Williams, Stephen Rong, John T. Burley, Kimberly B. Neil, Adam N. Spierer, Wilson McKerrow, David S. Johnson, Yevgeniy Raynes, Thomas J. Fayton, Nicholas Skvir, David A. Ferranti, Maya Greenhill Zeff, Amanda Lyons, Naima Okami, David M. Morgan, Kealohanuiopuna Kinney, Bianca R. P. Brown, Anne E. Giblin, Zoe G. Cardon","doi":"10.1111/mec.17093","DOIUrl":null,"url":null,"abstract":"<p>Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host–parasite coevolution. The trematode (<i>Levinseniella byrdi</i>) is known to alter the colour and behaviour of its amphipod host (<i>Orchestia grillus</i>) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for <i>O. grillus</i> including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"32 18","pages":"5028-5041"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17093","citationCount":"0","resultStr":"{\"title\":\"Parasite manipulation of host phenotypes inferred from transcriptional analyses in a trematode-amphipod system\",\"authors\":\"David M. Rand, Joaquin C. B. Nunez, Shawn Williams, Stephen Rong, John T. Burley, Kimberly B. Neil, Adam N. Spierer, Wilson McKerrow, David S. Johnson, Yevgeniy Raynes, Thomas J. Fayton, Nicholas Skvir, David A. Ferranti, Maya Greenhill Zeff, Amanda Lyons, Naima Okami, David M. Morgan, Kealohanuiopuna Kinney, Bianca R. P. Brown, Anne E. Giblin, Zoe G. Cardon\",\"doi\":\"10.1111/mec.17093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host–parasite coevolution. The trematode (<i>Levinseniella byrdi</i>) is known to alter the colour and behaviour of its amphipod host (<i>Orchestia grillus</i>) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for <i>O. grillus</i> including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"32 18\",\"pages\":\"5028-5041\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17093\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17093","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Parasite manipulation of host phenotypes inferred from transcriptional analyses in a trematode-amphipod system
Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host–parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms