人工智能与黑色素瘤:临床、皮肤镜和组织学应用的综合综述

IF 3.9 3区 医学 Q2 CELL BIOLOGY
Katherine M. Stiff, Matthew J. Franklin, Yufei Zhou, Anant Madabhushi, Thomas J. Knackstedt
{"title":"人工智能与黑色素瘤:临床、皮肤镜和组织学应用的综合综述","authors":"Katherine M. Stiff,&nbsp;Matthew J. Franklin,&nbsp;Yufei Zhou,&nbsp;Anant Madabhushi,&nbsp;Thomas J. Knackstedt","doi":"10.1111/pcmr.13027","DOIUrl":null,"url":null,"abstract":"<p>Melanoma detection, prognosis, and treatment represent challenging and complex areas of cutaneous oncology with considerable impact on patient outcomes and healthcare economics. Artificial intelligence (AI) applications in these tasks are rapidly developing. Neural networks with increasing levels of sophistication are being implemented in clinical image, dermoscopic image, and histopathologic specimen classification of pigmented lesions. These efforts hold promise of earlier and highly accurate melanoma detection, as well as reliable prognostication and prediction of therapeutic response. Herein, we provide a brief introduction to AI, discuss contemporary investigational applications of AI in melanoma, and summarize challenges encountered with AI.</p>","PeriodicalId":219,"journal":{"name":"Pigment Cell & Melanoma Research","volume":"35 2","pages":"203-211"},"PeriodicalIF":3.9000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13027","citationCount":"12","resultStr":"{\"title\":\"Artificial intelligence and melanoma: A comprehensive review of clinical, dermoscopic, and histologic applications\",\"authors\":\"Katherine M. Stiff,&nbsp;Matthew J. Franklin,&nbsp;Yufei Zhou,&nbsp;Anant Madabhushi,&nbsp;Thomas J. Knackstedt\",\"doi\":\"10.1111/pcmr.13027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Melanoma detection, prognosis, and treatment represent challenging and complex areas of cutaneous oncology with considerable impact on patient outcomes and healthcare economics. Artificial intelligence (AI) applications in these tasks are rapidly developing. Neural networks with increasing levels of sophistication are being implemented in clinical image, dermoscopic image, and histopathologic specimen classification of pigmented lesions. These efforts hold promise of earlier and highly accurate melanoma detection, as well as reliable prognostication and prediction of therapeutic response. Herein, we provide a brief introduction to AI, discuss contemporary investigational applications of AI in melanoma, and summarize challenges encountered with AI.</p>\",\"PeriodicalId\":219,\"journal\":{\"name\":\"Pigment Cell & Melanoma Research\",\"volume\":\"35 2\",\"pages\":\"203-211\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13027\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment Cell & Melanoma Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13027\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment Cell & Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13027","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 12

摘要

黑色素瘤的检测、预后和治疗是皮肤肿瘤学中具有挑战性和复杂性的领域,对患者的预后和医疗保健经济学有相当大的影响。人工智能(AI)在这些任务中的应用正在迅速发展。越来越复杂的神经网络被应用于临床图像、皮肤镜图像和组织病理标本的色素病变分类。这些努力为早期和高度准确的黑色素瘤检测以及可靠的预后和治疗反应预测带来了希望。在此,我们简要介绍了人工智能,讨论了人工智能在黑色素瘤中的当代研究应用,并总结了人工智能遇到的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence and melanoma: A comprehensive review of clinical, dermoscopic, and histologic applications

Melanoma detection, prognosis, and treatment represent challenging and complex areas of cutaneous oncology with considerable impact on patient outcomes and healthcare economics. Artificial intelligence (AI) applications in these tasks are rapidly developing. Neural networks with increasing levels of sophistication are being implemented in clinical image, dermoscopic image, and histopathologic specimen classification of pigmented lesions. These efforts hold promise of earlier and highly accurate melanoma detection, as well as reliable prognostication and prediction of therapeutic response. Herein, we provide a brief introduction to AI, discuss contemporary investigational applications of AI in melanoma, and summarize challenges encountered with AI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pigment Cell & Melanoma Research
Pigment Cell & Melanoma Research 医学-皮肤病学
CiteScore
8.90
自引率
2.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Pigment Cell & Melanoma Researchpublishes manuscripts on all aspects of pigment cells including development, cell and molecular biology, genetics, diseases of pigment cells including melanoma. Papers that provide insights into the causes and progression of melanoma including the process of metastasis and invasion, proliferation, senescence, apoptosis or gene regulation are especially welcome, as are papers that use the melanocyte system to answer questions of general biological relevance. Papers that are purely descriptive or make only minor advances to our knowledge of pigment cells or melanoma in particular are not suitable for this journal. Keywords Pigment Cell & Melanoma Research, cell biology, melatonin, biochemistry, chemistry, comparative biology, dermatology, developmental biology, genetics, hormones, intracellular signalling, melanoma, molecular biology, ocular and extracutaneous melanin, pharmacology, photobiology, physics, pigmentary disorders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信